Petri Nets and Higher-Dimensional Automata

Amazigh Amrane¹ Hugo Bazille¹ Uli Fahrenberg¹² Loïc Hélouët² Philipp Schlehuber-Caissier³

EPITA Research Lab (LRE), Rennes/Paris, France IRISA & Inria Rennes, France SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France

Petri Nets 2025

Concurrent Semantics of Petri Nets via and Higher-Dimensional Automata

Amazigh Amrane¹ Hugo Bazille¹ Uli Fahrenberg¹² Loïc Hélouët² Philipp Schlehuber-Caissier³

EPITA Research Lab (LRE), Rennes/Paris, France IRISA & Inria Rennes, France SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France

Petri Nets 2025

Inhibitor Arcs

Other Extensions

Conclusion 0

Higher-Dimensional Automata?

PN'23 UF, K. Ziemiański: A Myhill-Nerode theorem for higher-dimensional automata
 PN'24 A. Amrane, H. Bazille, E. Clement, UF: Languages of higher-dimensional timed automata

PN'25 A. Amrane, H. Bazille, UF, L. Hélouët, P. Schlehuber-Caissier: *Petri Nets and higher-dimensional automata*

Inhibitor Arcs

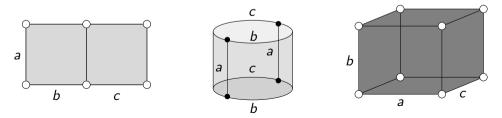
Other Extensions

Conclusion 0

Higher-Dimensional Automata?

PN'23 UF, K. Ziemiański: A Myhill-Nerode theorem for higher-dimensional automata
 PN'24 A. Amrane, H. Bazille, E. Clement, UF: Languages of higher-dimensional timed automata

- PN'25 A. Amrane, H. Bazille, UF, L. Hélouët, P. Schlehuber-Caissier: *Petri Nets and higher-dimensional automata*
 - Rob van Glabbeek 2006: On the expressiveness of higher-dimensional automata



Uli Fahrenberg

Petri Nets and Higher-Dimensional Automata

Motivation	
000	

Higher-Dimensional Automata

Concurrent Semantics of Petri Nets

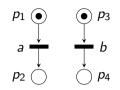
Inhibitor Arcs

Other Extensions

Conclusion 0

Semantics of Petri Nets

Petri net (S, T, F): places S; transitions T; weighted flows $F : S \times T \cup T \times S \rightarrow \mathbb{N}$



Inhibitor Arcs

Other Extensions

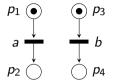
Conclusion 0

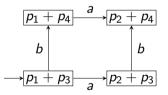
Semantics of Petri Nets

Petri net (S, T, F): places S; transitions T; weighted flows $F : S \times T \cup T \times S \rightarrow \mathbb{N}$

Interleaved semantics (reachability graph) (V, E):

- $V = \mathbb{N}^{S}$: all markings
- $E \subseteq V \times T \times V$: one transition at a time
- $E = \{(m, t, m') \mid {}^{\bullet}t \le m, m' = m {}^{\bullet}t + t^{\bullet}\}$
- initial marking \implies initial state; take reachable part





Inhibitor Arcs

Other Extensions

Conclusion 0

Semantics of Petri Nets

Petri net (S, T, F): places S; transitions T; weighted flows $F : S \times T \cup T \times S \rightarrow \mathbb{N}$

Interleaved semantics (reachability graph) (V, E):

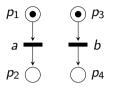
- $V = \mathbb{N}^{S}$: all markings
- $E \subseteq V \times T \times V$: one transition at a time
- $E = \{(m, t, m') \mid {}^{\bullet}t \le m, m' = m {}^{\bullet}t + t^{\bullet}\}$
- initial marking \implies initial state; take reachable part

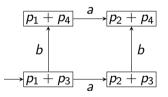
Concurrent step reachability graph (V, E'):

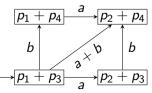
- $V = \mathbb{N}^{S}$
- $E' \subseteq V \times \mathbb{N}^T \times V$: multisets of transitions

•
$$E' = \{(m, U, m') \mid {}^{\bullet}U \leq m, m' = m - {}^{\bullet}U + U^{\bullet}\}$$

Uli Fahrenberg Petri Nets

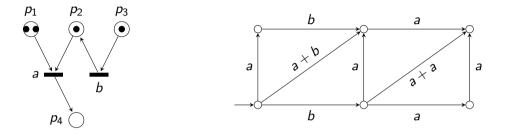






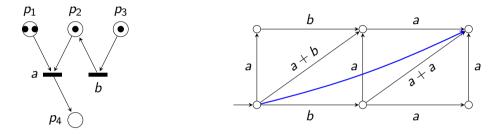
Petri Nets and Higher-Dimensional Automata

Motivation 00●	Higher-Dimensional Automata 00000	Concurrent Semantics of Petri Nets	Inhibitor Arcs 000000	Other Extensions	Conclusion O
A . I	-				



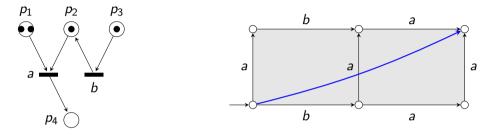
• after firing *b*, *a* is auto-concurrent

Motivation 00●	Higher-Dimensional Automata 00000	Concurrent Semantics of Petri Nets	Inhibitor Arcs 000000	Other Extensions	Conclusion 0
A					



- after firing *b*, *a* is auto-concurrent
- semantics misses some behavoir?
 - start a start b finish b start another a etc.

Motivation 00●	Higher-Dimensional Automata 00000	Concurrent Semantics of Petri Nets	Inhibitor Arcs 000000	Other Extensions	Conclusion O
A is a the air	. Evenenie				



- after firing *b*, *a* is auto-concurrent
- semantics misses some behavoir?
 - start a start b finish b start another a etc.
- enter higher-dimensional automata
 - replace multi-transitions by squares

Higher-Dimensional Automata •0000 Concurrent Semantics of Petri Nets

Inhibitor Arcs

Other Extensions

Conclusion 0

1 Motivation

- 2 Higher-Dimensional Automata
- **3** Concurrent Semantics of Petri Nets
- **4** Inhibitor Arcs
- **5** Other Extensions

Inhibitor Arcs

Other Extensions

(a list of labeled events)

Conclusion 0

(cubes)

(cells of type U)

Higher-Dimensional Automata

A conclist is a finite, totally ordered, Σ -labeled set.

- A precubical set X consists of:
 - A set of cells X
 - Every cell $x \in X$ has a conclist ev(x) (list of events active in x)
 - We write $X[U] = \{x \in X \mid ev(x) = U\}$ for a conclist U
 - For every conclist U and $A \subseteq U$ there are: upper face map $\delta^1_A : X[U] \to X[U \setminus A]$ (terminating events A) lower face map $\delta^0_A : X[U] \to X[U \setminus A]$ ("unstarting" events A)
 - Precube identities: $\delta^{\mu}_{A}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{A}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A higher dimensional automaton (HDA) is a precubical set X with initial cells $\bot \subseteq X$ and accepting cells $\top \subseteq X$ (not necessarily vertices)

Motivation	
000	

Higher-Dimensional Automata

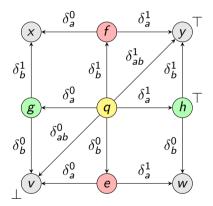
Concurrent Semantics of Petri Nets

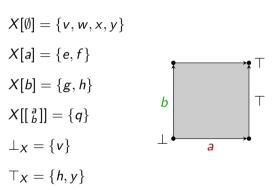
Inhibitor Arcs

Other Extensions

Conclusion 0

Example





Inhibitor Arcs

Other Extensions

Conclusion 0

Higher-Dimensional Automata & Concurrency Theory

HDAs as a model for concurrency:

- points: states
- edges: transitions
- squares, cubes etc.: independency relations / concurrently executing events
- two-dimensional automata ≅ asynchronous transition systems [Shields'85] [Bednarczyk'88]
- Introduced in [van Glabbeek'89]
- Generalize all main models of concurrency proposed in the literature
- (event structures; Petri nets; communicating automata; etc.)
- [van Glabbeek'06]: translations from Petri nets
 - individual vs. collective tokens; autoconcurrency or not

Motivation	
000	

Higher-Dimensional Automata

Concurrent Semantics of Petri Nets

Inhibitor Arcs

Other Extensions

Conclusion 0

Our Contributions

- Update van Glabbeek's translation to our new event-based HDA formalism
- Implement translation in new tool pn2HDA
- Extend to inhibitor arcs
- Extend to generalized self-modifying nets

Higher-Dimensional Automata

Concurrent Semantics of Petri Nets •0000 Inhibitor Arcs

Other Extensions

Conclusion 0

1 Motivation

- 2 Higher-Dimensional Automata
- **3** Concurrent Semantics of Petri Nets
- **4** Inhibitor Arcs
- **5** Other Extensions

Inhibitor Arcs

а

 p_2

Other Extensions

 p_3

 p_4

Conclusion 0

Concurrent Semantics of Petri Nets

Petri net (S, T, F): places S; transitions T; weighted flows $F : S \times T \cup T \times S \rightarrow \mathbb{N}$

• presets & postsets: t(s) = F(s, t), $t^{\bullet}(s) = F(t, s)$

Interleaved semantics
$$(V, E)$$
: $V = \mathbb{N}^{\mathcal{S}}$; $E \subseteq V imes \mathcal{T} imes V$

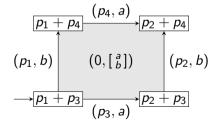
•
$$E = \{(m, t, m') \mid \bullet t \leq m, m' = m - \bullet t + t^{\bullet}\}$$

Concurrent semantics as HDA:

$$\Box = \Box(T), X = \mathbb{N}^{S} \times \Box, \text{ ev}(m, \tau) = \tau$$
• for $x = (m, \tau) \in X[\tau]$ with $\tau = (t_1, \ldots, t_n)$:

$$\delta_{t_i}^0(x) = (m + {}^{\bullet}t_i, (t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n))$$

$$\delta_{t_i}^1(x) = (m + t_i^{\bullet}, (t_1, \ldots, t_{i-1}, t_{i+1}, \ldots, t_n))$$



- initial marking \implies initial cell; take reachable part
- (no accepting cells) Uli Fahrenberg

Motivation	
000	

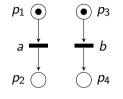
Inhibitor Arcs

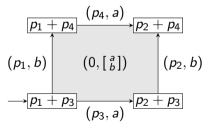
Other Extensions

Conclusion 0

Event Order

- trouble with symmetry: have a cell (0, [^a_b]), but also (0, [^b_a]) (not shown)
- solution: fix an arbitrary order \preccurlyeq on T
- and use $\Box = \left\{ \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix} \middle| \forall i = 1, \dots, n-1 : t_i \preccurlyeq t_{i+1} \right\}$ instead of $\Box(T)$
- order \preccurlyeq may be chosen (and re-chosen) at will
- here: lexicographic $a \prec b \prec \ldots$





Higher-Dimensional Automata

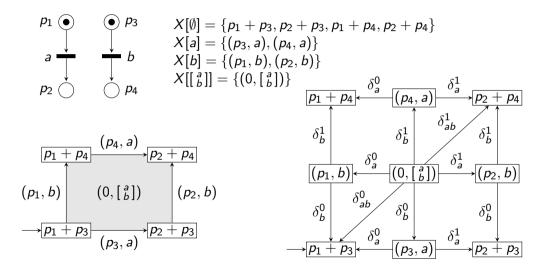
Concurrent Semantics of Petri Nets

Inhibitor Arcs

Other Extensions

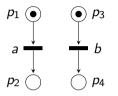
Conclusion 0

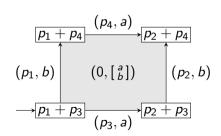
Example, Complete

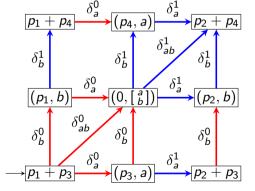


Motivation 000Higher-Dimensional Automata 00000Concurrent Semantics of Petri Nets 00000Inhibitor Arcs 00000Other Exter 00000	ensions Conclusion O
---	-------------------------

Example, Complete

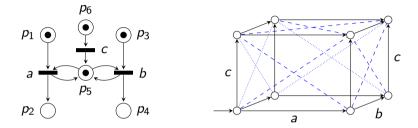






Uli Fahrenberg

Motivation	Higher-Dimensional Automata	Concurrent Semantics of Petri Nets	Inhibitor Arcs	Other Extensions	Conclusion
000	00000	0000●	000000		O
A					



- initially, p_5 is a mutex place: it disables concurrency of a and b
- after c fires, p_5 holds two tokens, so a and b become concurrent
- semantically, a hollow cube without bottom face

• the five faces: front:
$$(p_3, \begin{bmatrix} a \\ c \end{bmatrix})$$
, back: $(p_4, \begin{bmatrix} a \\ c \end{bmatrix})$
left: $(p_1, \begin{bmatrix} b \\ c \end{bmatrix})$, right: $(p_2, \begin{bmatrix} b \\ c \end{bmatrix})$
top: $(0, \begin{bmatrix} a \\ b \end{bmatrix})$

Uli Fahrenberg

Higher-Dimensional Automata

Concurrent Semantics of Petri Nets

Inhibitor Arcs

Other Extensions

Conclusion 0

1 Motivation

- 2 Higher-Dimensional Automata
- **3** Concurrent Semantics of Petri Nets
- **4** Inhibitor Arcs
- **5** Other Extensions

Motivation	Higher-Dimensional	Automat
000	00000	

Inhibitor Arcs

Other Extensions

Conclusion 0

Petri Nets With Inhibitor Arcs

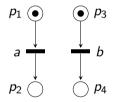
PNI (S, T, F, I): places S; transitions T; weighted flows F; inhibitor arcs $I \subseteq S \times T$

• inhibitor presets: ${}^{\circ}t(s) = \{s \in S \mid (s, t) \in I\}$

Transition t can fire if its inhibitor places are empty: $\forall s \in {}^{\circ}t : m(s) = 0.$

Example:

• without inhibitors: *a.b*, *b.a*, *a* + *b*



Motivation	Higher-Dimensional	Automat
000	00000	

Inhibitor Arcs

Other Extensions

Conclusion 0

Petri Nets With Inhibitor Arcs

PNI (S, T, F, I): places S; transitions T; weighted flows F; inhibitor arcs $I \subseteq S \times T$

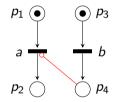
• inhibitor presets: ${}^{\circ}t(s) = \{s \in S \mid (s, t) \in I\}$

а

Transition t can fire if its inhibitor places are empty: $\forall s \in {}^{\circ}t : m(s) = 0.$

Example:

- without inhibitors: *a.b*, *b.a*, *a* + *b*
- now, *b.a* is forbidden



tion	Higher-Dimensional	Automat
	00000	

Inhibitor Arcs

Other Extensions

Conclusion 0

Petri Nets With Inhibitor Arcs

PNI (S, T, F, I): places S; transitions T; weighted flows F; inhibitor arcs $I \subseteq S \times T$

• inhibitor presets: ${}^{\circ}t(s) = \{s \in S \mid (s, t) \in I\}$

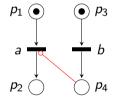
а

Transition t can fire if its inhibitor places are empty: $\forall s \in {}^{\circ}t : m(s) = 0.$

Example:

Motiva

- without inhibitors: a.b, b.a, a + b
- now, *b.a* is forbidden
- but what about a + b?



 $\underset{00000}{\text{Concurrent Semantics of Petri Nets}}$

Inhibitor Arcs

Other Extensions

Conclusion 0

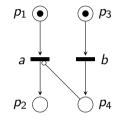
Petri Nets With Inhibitor Arcs: a-posteriori semantics

Conservative: *a-posteriori*, forbidding a + b.

It forbids all concurrent steps in which the post-places and inhibitor places intersect:

1
$$^{\bullet}U \leq m, m' = m - {}^{\bullet}U + U^{\bullet}$$

2 $\forall t \in U : \forall s \in {}^{\circ}t : m(s) = 0$
3 $\forall t_1, t_2 \in U : t_1^{\bullet} \cap {}^{\circ}t_2 = \emptyset$ (if $t_1 \neq t_2$ or $U(t_1) \geq 2$)



Inhibitor Arcs

Other Extensions

Conclusion 0

Petri Nets With Inhibitor Arcs: a-posteriori semantics

Conservative: *a-posteriori*, forbidding a + b.

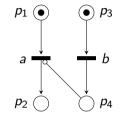
It forbids all concurrent steps in which the post-places and inhibitor places intersect:

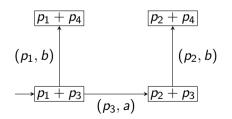
$$\bullet U \leq m, m' = m - \bullet U + U \bullet$$

$$2 \quad \forall t \in U : \forall s \in {}^{\circ}t : m(s) = 0$$

$${f 3} \,\, orall t_1, t_2 \in U: t_1^{ullet} \cap {}^\circ t_2 = \emptyset \; (ext{if} \; t_1
eq t_2 \; ext{or} \; U(t_1) \geq 2)$$

Transitions of concurrent step can be executed in any order, they are closed under substeps: $(m, U, m'') \implies (m, U_1, m')$ and (m', U_2, m'') for $U = U_1 \uplus U_2$





Inhibitor Arcs 000€00 Other Extensions

Conclusion 0

Petri Nets With Inhibitor Arcs: a-priori semantics

Less conservative: *a-priori*, allowing a + b.

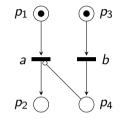
Omits the third rule:

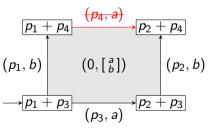
 $\exists \forall t_1, t_2 \in U : t_1^{\bullet} \cap {}^{\circ}t_2 = \emptyset \text{ (if } t_1 \neq t_2 \text{ or } U(t_1) \geq 2)$

This allows to start a while b is active.

However we need to forbid the top face, as otherwise b.a would be allowed.

We obtain a partial HDA.





Inhibitor Arcs 0000€0 Other Extensions

Conclusion 0

Partial Higher-Dimensional Automata

A partial precubical set X consists of:

• A set of cells X

(cubes)

(cells of type U)

- Every cell $x \in X$ has a conclist ev(x) (list of events active in x)
- We write $X[U] = \{x \in X \mid \mathsf{ev}(x) = U\}$ for a conclist U
- For every conclist U and $A \subseteq U$ there are: partial upper face map $\delta_A^1 : X[U] \rightarrow X[U \setminus A]$ (terminating events A) partial lower face map $\delta_A^0 : X[U] \rightarrow X[U \setminus A]$ (unstarting events A)
- $\delta^{\mu}_{A}\delta^{\nu}_{B} = \delta^{\nu}_{B}\delta^{\mu}_{A}$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0,1\}$ if these are defined

A partial higher dimensional automaton (pHDA) is a partial precubical set X with initial cells $\perp \subseteq X$ and accepting cells $\top \subseteq X$

Motivation	
000	

Higher-Dimensional Automata

Mutual Inhibition

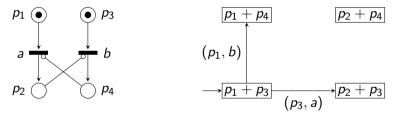
Concurrent Semantics of Petri Nets

Inhibitor Arcs

Other Extensions

Conclusion 0

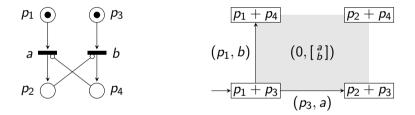
a-posteriori semantics



Motivation 000	Higher-Dimensional Automata 00000	Concurrent Semantics of Petri Nets	Inhibitor Arcs 00000●	Other Extensions	Conclusion 0

Mutual Inhibition

a-priori semantics



There is a (concurrent) path to the final marking!

Higher-Dimensional Automata

Concurrent Semantics of Petri Nets

Inhibitor Arcs

Conclusion 0

1 Motivation

- 2 Higher-Dimensional Automata
- **3** Concurrent Semantics of Petri Nets
- **4** Inhibitor Arcs
- **(5)** Other Extensions

Higher-Dimensional Automata

Concurrent Semantics of Petri Nets

Inhibitor Arcs

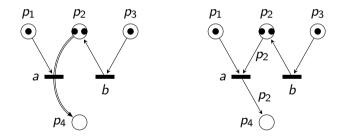
Other Extensions

Conclusion 0

Generalized Self-Modifying Nets

"Can you do read arcs/transfer arcs/reset arcs/etc.?"

G-net (S, T, F): places S; transitions T; weighted flows $F : S \times T \cup T \times S \rightarrow \mathbb{N}[S]$



• partial-HDA semantics needs a notion of memory: remember state of the net before transitions fire

Higher-Dimensional Automata

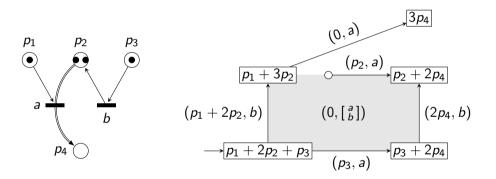
Concurrent Semantics of Petri Nets

Inhibitor Arcs

 $\underset{00 \bullet 0}{\text{Other Extensions}}$

Conclusion 0

Transfer Arcs Are Funny



Higher-Dimensional Automata

Concurrent Semantics of Petri Nets

Inhibitor Arcs

 $\underset{000}{\text{Other Extensions}}$

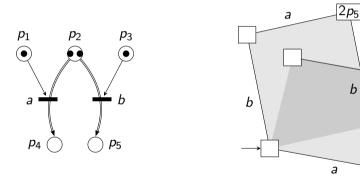
 $2p_{4}$

b

а

Conclusion O

Transfer Arcs Are Funny



Concurrent Semantics of Petri Nets

Inhibitor Arcs

Other Extensions

Conclusion

- higher-dimensional automata (HDAs) are useful to express concurrent semantics of Petri nets
- new tool pn2HDA
- partial HDAs for extensions
 - i are pHDAs sufficient for all G-nets ?
- useful for reasoning about transformations
 - Example (Busi): Primitive systems (with inhibitors) may be simulated by Petri nets without inhibitors, but not if you want to respect concurrency.
- next step: time!

Higher-Dimensional Automata

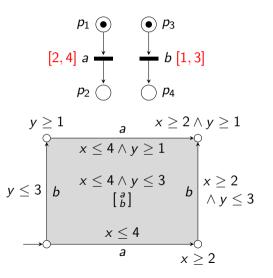
Concurrent Semantics of Petri Nets

Inhibitor Arcs

Other Extensions

Conclusion

- higher-dimensional automata (HDAs) are useful to express concurrent semantics of Petri nets
- new tool pn2HDA
- partial HDAs for extensions
 - $\stackrel{}{\iota}$ are pHDAs sufficient for all G-nets ?
- useful for reasoning about transformations
 - Example (Busi): Primitive systems (with inhibitors) may be simulated by Petri nets without inhibitors, but not if you want to respect concurrency.
- next step: time!



Higher-Dimensional Automata

Concurrent Semantics of Petri Nets

Inhibitor Arcs

Other Extensions

Conclusion

- higher-dimensional automata (HDAs) are useful to express concurrent semantics of Petri nets
- new tool pn2HDA
- partial HDAs for extensions
 - $\stackrel{}{\iota}$ are pHDAs sufficient for all G-nets ?
- useful for reasoning about transformations
 - Example (Busi): Primitive systems (with inhibitors) may be simulated by Petri nets without inhibitors, but not if you want to respect concurrency.
- next step: time!

