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Motivation

What is the minimum amount of battery required for the satellite to
always be able to send and receive messages?

The theory of weighted automata is very powerful
Here: an application to energy problems
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Semirings
A semiring is a structure (S, ⊕, ⊗, 0, 1) such that

(S, ⊕, 0) is a commutative monoid,
▶ x ⊕ y = y ⊕ x , x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z , x ⊕ 0 = x

(S, ⊗, 1) is a monoid,
▶ x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z , x ⊗ 1 = 1 ⊗ x = x

and which satisfies distributive and annihilation laws:
▶ x(y ⊕ z) = xy ⊕ xz , (x ⊕ y)z = xz ⊕ yz
▶ x ⊗ 0 = 0 ⊗ x = 0

Examples:
natural numbers: (N, +, ·, 0, 1)
the boolean semiring: ({ff, tt}, ∨, ∧, ff, tt)
max-plus algebra: (R ∪ {−∞}, max, +, −∞, 0)
min-plus algebra: (R ∪ {∞}, min, +, ∞, 0)
languages over some alphabet Σ: (2Σ∗

, ∪, ·, ∅, {ϵ})
etc.
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Weighted Automata
A weighted automaton (over a semiring S) is a structure (Q, I, K , T ):

Q: finite set of states, I, K ⊆ Q initial / accepting states
T ⊆ Q × S × Q

Examples:

along paths:
choice between paths:
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Weighted Automata
A weighted automaton (over a semiring S) is a structure (Q, I, K , T ):

Q: finite set of states, I, K ⊆ Q initial / accepting states
T ⊆ Q × S × Q

Examples:
(2Σ∗

, ∪, ·, ∅, {ϵ}){a}

{b}

∅

{a, c}
{b}

{ϵ}

{d} {a}
along paths: ·
choice between paths: ∪
usual automata |A| = {b}{a, c} ∪ {b}{a, c}{b}{a} ∪ · · ·
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Weighted Automata
A weighted automaton (over a semiring S) is a structure (Q, I, K , T ):

Q: finite set of states, I, K ⊆ Q initial / accepting states
T ⊆ Q × S × Q

Examples:
({ff, tt}, ∨, ∧, ff, tt)tt

tt

ff

tt
tt

tt

tt tt
along paths: ∧
choice between paths: ∨
digraphs |A| = (⊚ is reachable)
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Weighted Automata
A weighted automaton (over a semiring S) is a structure (Q, I, K , T ):

Q: finite set of states, I, K ⊆ Q initial / accepting states
T ⊆ Q × S × Q

Examples:
(R ∪ {∞}, min, +, ∞, 0)1

2

∞

2
2

0

4 1
along paths: +
choice between paths: min
shortest path |A| = 4
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Weighted Automata
A weighted automaton (over a semiring S) is a structure (Q, I, K , T ):

Q: finite set of states, I, K ⊆ Q initial / accepting states
T ⊆ Q × S × Q

Examples:
(R ∪ {−∞, ∞}, max, min, −∞, ∞)1

2

−∞

2
2

∞

4 1
along paths: min
choice between paths: max
maximum flow |A| = 2
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Reachability in Weighted Automata

Let S = (S, ⊕, ⊗, 0, 1) be a semiring and A = (Q, I, K , T ) a weighted
automaton over S.

a path in A: π = q1
x1−→ q2

x2−→ · · · xn−1−→ qn with all
(qi , xi , qi+1) ∈ T
the value of π: |π| = x1 ⊗ x2 ⊗ · · · ⊗ xn−1

π accepting if q1 ∈ I and qn ∈ K

Definition
The reachability value of A is

|A| =
⊕ {

|π|
∣∣ π accepting path in A

}
⊗ along paths; ⊕ between paths
needs some provision for infinite sums!

Uli Fahrenberg Star-Continuous Ésik Algebras 11/ 33



Complete Semirings

Definition (repeat)
The reachability value of A is

|A| =
⊕ {

|π|
∣∣ π accepting path in A

}
needs some provision for infinite sums!

Definition
A semiring (S, ⊕, ⊗, 0, 1) is complete if all infinite sums

⊕
X for

X ⊆ S exist.

now the definition of |A| makes sense
but completeness is a rather restrictive condition
we’ll do something different
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Continuous Kleene Algebras

From now on, restrict to idempotent semirings (S, ⊕, ⊗, 0, 1).
that is, x ⊕ x = x for all x ∈ S
N is not idempotent, but B, max-plus, min-plus, max-min, 2Σ∗

are, as are most other important examples
write ∨ = ⊕ and ⊥ = 0 for emphasis

Definition
A continuous Kleene algebra is an idempotent semiring (S, ∨, ⊗, ⊥, 1)
in which

∨
X exists for all X ⊆ S, and such that for all Y ⊆ S,

x , z ∈ S, x
( ∨

Y
)
z =

∨
xYz .

a complete idempotent semiring in which multiplication
distributes over infinite suprema
again, too restrictive
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Star-Continuous Kleene Algebras
Definition (repeat)
A continuous Kleene algebra is an idempotent semiring (S, ∨, ⊗, ⊥, 1)
in which

∨
X exists for all X ⊆ S, and such that for all Y ⊆ S,

x , z ∈ S, x
( ∨

Y
)
z =

∨
xYz .

Definition
A star-continuous Kleene algebra is an idempotent semiring
(S, ∨, ⊗, ⊥, 1) in which

∨
{xn | n ≥ 0} exists for all x ∈ S, and such

that for all x , y , z ∈ S, x
( ∨

{yn | n ≥ 0}
)
z =

∨
x{yn | n ≥ 0}z .

loop abstraction:
x

y

z

local: x
( ∨

n≥0
yn)

z global:
∨
n≥0

(
xynz

)
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Star-Continuous Kleene Algebras

For x ∈ S in a star-continuous Kleene algebra S, define

x∗ =
∨
n≥0

xn

for languages, that’s the Kleene star
poor man’s inverse: the equation

x∗ = 1 ⊕ x ⊕ x2 ⊕ · · · = 1
1 − x

does make surprisingly much sense!
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Matrix Semirings

Let S be a semiring and n ≥ 1.
Sn×n: semiring of n × n matrices over S
(with matrix addition and multiplication)
If S is a star-continuous Kleene algebra, then so is Sn×n

with M∗
i ,j =

∨
m≥0

∨
1≤k1,...,km≤n

Mi ,k1Mk1,k2 · · · Mkm,j

and for M =
[
a b
c d

]
any partition,

M∗ =
[

(a ∨ bd∗c)∗ (a ∨ bd∗c)∗bd∗

(d ∨ ca∗b)∗ca∗ (d ∨ ca∗b)∗

]
(recursively)
“generalized Floyd-Warshall”
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Reachability in Weighted Automata, II

Let S = (S, ∨, ⊗, ⊥, 1) be a star-continuous Kleene algebra and
A = (Q, I, K , T ) a weighted automaton over S.

transform A to matrix form:
▶ recall T : Q × Q → S
▶ write Q = {1, . . . , n}
▶ then I, K ⊆ Q become ι, κ ∈ {⊥, 1}n

▶ and T ∈ Sn×n: the transition matrix
recall |A| =

⊕ {
|π|

∣∣ π accepting path in A
}

Theorem
|A| = ιT ∗κ
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Motivation: Büchi Conditions in Weighted Automata

Let A = (Q, I, K , T ) be a weighted automaton over a semiring S
an infinite path in A: π = q1

x1−→ q2
x2−→ · · · with all

(qi , xi , qi+1) ∈ T
π Büchi if q1 ∈ I and

{q ∈ Q | ∀n ≥ 0 : ∃i ≥ n : qi = q} ∩ K ̸= ∅

Goal: make sense of the “definition”

∥A∥ =
⊕ {

∥π∥
∣∣ π Büchi path in A

}
but what is the value ∥π∥ of an infinite path? an infinite product?
and, how to compute the sum

⊕
?
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Semiring-Semimodule Pairs

semiring S = (S, ⊕, ⊗, 0, 1)
plus commutative monoid V = (V , ⊕, 0)
left S-action S × V → V , (s, v) 7→ sv
such that for all s, s ′ ∈ S, v ∈ V :

(s ⊕ s ′)v = sv ⊕ s ′v s(v ⊕ v ′) = sv ⊕ sv ′

(ss ′)v = s(s ′v) 0s = 0
s0 = 0 1v = v

(think of vector spaces over fields, or modules over rings)
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Ésik Algebras

Definition
An Ésik algebra is an idempotent semiring-semimodule pair (S, V )
together with an infinite product

∏
: Sω → V , such that

for all x0, x1, . . . ∈ S,
∏

xn = x0
∏

xn+1;
for any sequence x0, x1, . . . ∈ S and any sequence
0 = n0 ≤ n1 ≤ · · · which increases without a bound, let
yk = xnk · · · xnk+1−1 for all k ≥ 0; then

∏
xn =

∏
yk .

that is,
∏

generalizes the finite product in S
a new name for an old notion (Zoltán Ésik passed away in 2016)
S for values of finite paths; V for values of infinite paths:∥∥q1

x1−→ q2
x2−→ · · ·

∥∥ =
∏

xn−1
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Continuous Ésik Algebras

Definition
An Ésik algebra (S, V ,

∏
) is continuous if

S is a continuous Kleene algebra and V is a complete lattice,
the S-action on V preserves all suprema in either argument, and
for all X0, X1, . . . ⊆ S,

∏
(
∨

Xn) =
∨ { ∏

xn | xn ∈ Xn, n ≥ 0
}
.

Ésik-Kuich 2004
“continuous” =⇒ too restrictive
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Star-Continuous Ésik Algebras

Definition
An Ésik algebra (S, V ,

∏
) is star-continuous if

S is a star-continuous Kleene algebra,
for all x , y ∈ S, v ∈ V , xy∗v =

∨
n≥0

xynv ,

for all x0, x1, . . . , y , z ∈ S,
∏

(xn(y ∨ z)) =
∨

x ′
0,x ′

1,...∈{y ,z}

∏
xnx ′

n,

for all x , y0, y1, . . . ∈ S,
∏

x∗yn =
∨

k0,k1,...≥0

∏
xknyn.

Ésik-Fahrenberg-Legay-Quaas 2015
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Matrix Semiring-Semimodule Pairs

Let (S, V ) be a semiring-semimodule pair and n ≥ 1.
(Sn×n, V n) is again a semiring-semimodule pair
(the action is matrix-vector product)
if (S, V ) is a star-continuous Ésik algebra, then there is an
operation ω : Sn×n → V n given by
Mω

i =
∨

1≤k1,k2,...≤n
Mi ,k1Mk1,k2 · · ·

▶ (not a general infinite product)

and for M =
[
a b
c d

]
any partition,

Mω =
[
(a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω

(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω

]
(recursively)
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Büchi Conditions in Weighted Automata, II

Let (S, V ) be a star-continuous Ésik algebra and A = (n, ι, κ, T ) a
weighted automaton over S.

reorder Q = {1, . . . , n} so that κ = (1, . . . , 1, ⊥, . . . , ⊥)
▶ that is, now the first k ≤ n states are accepting

write T =
[
a b
c d

]
, with a ∈ Sk×k

Theorem

∥A∥ = ι

[
(a + bd∗c)ω

d∗c(a + bd∗c)ω

]
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Energy Problems

What is the minimum amount of battery required for the satellite to
always be able to send and receive messages?
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Energy Automata

Energy function:
partial function f : R≥0 ↪→ R≥0

which is defined on some closed interval [lf , ∞[ or on some open
interval ]lf , ∞[,
and such that for all x ≤ y for which f is defined,

f (y) − f (x) ≥ y − x

Energy automaton: finite automaton labeled with energy functions

x 7→ x + 2; x ≥ 2

x 7→ x + 3; x > 1

x 7→ 2x − 2; x ≥ 1
x 7→ x − 1; x > 1

x 7→ x + 1; x ≥ 0
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Energy Automata, Semantically

x 7→ x + 2; x ≥ 2

x 7→ x + 3; x > 1

x 7→ 2x − 2; x ≥ 1
x 7→ x − 1; x > 1

x 7→ x + 1; x ≥ 0

start with initial energy x0 and update at transitions according to
label function
if label function undefined on input, transition is disabled

a discrete-time hybrid automaton (?)

Reachability: Given x0, does there exist an accepting (finite) run with
initial energy x0?

Büchi: Given x0, does there exist a Büchi (infinite) run with initial
energy x0?
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Reachability in Energy Automata
Let L = [0, ∞]⊥: extended nonnegative real numbers plus ⊥ (for
“undefined”)

▶ (a complete lattice)
Extended energy function: function f : L → L
with f (⊥) = ⊥, and f (∞) = ∞ unless f (x) = ⊥ for all x ∈ L,
and f (y) − f (x) ≥ y − x for all x ≤ y .
Set E of such functions is an idempotent semiring with operations
∨ (pointwise max) and ◦ (composition)
in fact, a star-continuous Kleene algebra

▶ f ∗(x) = x if f (x) ≤ x ; f ∗(x) = ∞ if f (x) > x
▶ not a continuous Kleene algebra

Theorem (Reachability)
There exists an accepting run from initial energy x0 iff |A|(x0) ̸= ⊥.
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Büchi Runs in Energy Automata
Let 2 = {ff, tt}: the Boolean lattice
Let V be the set of monotone and ⊤-continuous functions L → 2

▶ f : L → 2 is called ⊤-continuous if f (x) ≡ ff or for all
X ⊆ L with

∨
X = ∞, also

∨
f (X ) = tt.

(E , V) is an idempotent semiring-semimodule pair
Define

∏
: Eω → V by

(
∏

fn)(x) = tt iff ∀n ≥ 0 : fn(fn−1(· · · (x) · · · )) ̸= ⊥

Lemma:
∏

fn is indeed ⊤-continuous for all f0, f1, . . . ∈ E
Theorem: (V, E) is a star-continuous Ésik algebra

▶ not a continuous Ésik algebra

Theorem (Büchi)
There exists a Büchi run from initial energy x0 iff ∥A∥(x0) ̸= ff.
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Computability

Let E ′ ⊆ E , V ′ ⊆ V such that
E ′ is closed under ∨, ◦, and ∗

V ′ is closed under ∨ and contains all infinite products of elements
of E ′

all elements of E ′ and V ′ are finitely representable

Theorem
Reachability and Büchi acceptance are decidable for E ′-weighted
energy automata.

The above holds for example for E ′ all piecewise linear energy
functions.
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Conclusion
semirings and weighted automata: a very versatile framework

▶ barely touched applications here
▶ see Droste, Kuich, Vogler (eds.): Handbook of Weighted

Automata, Springer 2009
star-continuous Ésik algebras: a useful generalization of
continuous Ésik algebras

▶ (like star-continuous Kleene algebras are a useful
generalization of continuous Kleene algebras)

can be used to solve general energy problems

Ongoing work:
real-time energy problems (FORMATS 2008; FM 2018; LMCS
2019; FAC 2025)
hybrid systems?

non-idempotent case?
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