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• plane ticket reservation system
• fleet of robots
• your computer!
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• networks of automata
• Petri nets
• event structures
• higher-dimensional automata
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• Variants of directed topological spaces
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Viinistu

Based on lectures given at the 2025 Estonian Winter School in Computer Science
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Algebraic View

A program is
• a sequence of instructions
• plus branches
• and loops

Kleene algebra: set S with
• concatenation ⊗
• choice ⊕
• repetition ∗

• idempotent semiring with unary ∗

which computes fixed points
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Geometric View

A program is a sequence of instructions
• ignoring branches and loops for now

Now, a second program in parallel:

P
Q
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Geometric View

A program is a sequence of instructions
• ignoring branches and loops for now

Now, a second program in parallel:

P
Q

an execution of P∥Q
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Geometric View

A program is a sequence of instructions
• ignoring branches and loops for now

Now, a second program in parallel:

P
Q

not an execution
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Geometric View

A program is a sequence of instructions
• ignoring branches and loops for now

Now, a second program in parallel:

P
Q

a geometric execution (!)
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Geometric View

A program is a sequence of instructions
• ignoring branches and loops for now

Now, a second program in parallel:

P
Q

not a geometric execution
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Holes

Adding mutual exclusion:

x← 3

x← 2

• homotopic paths =̂ equivalent executions
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Holes

Adding mutual exclusion:

x← 3

x← 2

x = 3

x = 2
not an execution

• homotopic paths =̂ equivalent executions
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Holes

Adding mutual exclusion:

x← 3

x← 2

x = 3

x = 2
not an execution

• homotopic paths =̂ equivalent executions
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More Holes

Semaphores à la Dijkstra (P =̂ acquire; V =̂ release):

Pa Pb Vb Va

Pb

Pa

Va

Vb

mutual exclusion on a
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More Holes

Semaphores à la Dijkstra (P =̂ acquire; V =̂ release):

Pa Pb Vb Va

Pb

Pa

Va
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More Holes

Semaphores à la Dijkstra (P =̂ acquire; V =̂ release):

Pa Pb Vb Va

Pb

Pa

Va

Vb

doomed

deadlocked execution

unreachable
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Summing Up

• A program is a

directed

topological space
• An execution is a

directed

path through said space
• Two executions are equivalent iff their

di

paths are

di

homotopic
• Deadlocks and unreachable states are concave corners
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Summing Up

• A program is a directed topological space
• An execution is a directed path through said space
• Two executions are equivalent iff their dipaths are dihomotopic
• Deadlocks and unreachable states are concave corners
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Directed Spaces

Definition (po-space)
A partially ordered space is a topological space X together with a partial order ≤ on X
such that ≤ ⊆ X × X is closed in the product topology.
A morphism of po-spaces is a ≤-preserving continuous function.

• a dipath in a po-space is a continuous & monotone path
• a morphism I⃗ → X

• directed interval I⃗ = [0, 1] with usual order
• directed square I⃗ × I⃗, cube, etc.

• concatenation ⊗, branching ⊕
• no loops
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Directed Spaces

Definition (lpo-space)
A locally partially ordered space is a Hausdorff topological space X together with a
relation ≤ on X in which any x ∈ X has an open neighborhood U ∋ x such that the
restriction of ≤ to U is a closed partial order.
A morphism of po-spaces is a continuous function which is locally ≤-preserving.
• ≤ may be taken globally reflexive and transitive

• a dipath is a morphism I⃗ → X

Uli Fahrenberg Discrete and Continuous Models for Concurrent Systems 31 / 42



Introduction Geometric Semantics Directed Algebraic Topology

Directed Spaces

Definition (lpo-space)
A locally partially ordered space is a Hausdorff topological space X together with a
relation ≤ on X in which any x ∈ X has an open neighborhood U ∋ x such that the
restriction of ≤ to U is a closed partial order.
A morphism of po-spaces is a continuous function which is locally ≤-preserving.
• ≤ may be taken globally reflexive and transitive
• a dipath is a morphism I⃗ → X

Uli Fahrenberg Discrete and Continuous Models for Concurrent Systems 32 / 42



Introduction Geometric Semantics Directed Algebraic Topology

Directed Spaces

Definition (d-space)
A directed space is a topological space X together with a set P⃗X of paths I → X , called
directed paths, such that
• all constant paths are directed,
• concatenations of directed paths are directed, and
• reparametrizations and restrictions of directed paths are directed.

A morphism of d-spaces is a continuous function which preserves directed paths.
• a dipath is a morphism p : I⃗ → X , equivalently p ∈ P⃗X

I⃗ × I⃗ I⃗ × I I⃗ × Ĩ
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Directed Spaces

Definition (d-space; unpacked)
A directed space is a topological space X together with a set P⃗X ⊆ Top(I, X ) such that
• ∀p ∈ X : λx .p ∈ P⃗X [const]
• ∀α, β ∈ P⃗X : α(1) = β(0) =⇒ α ∗ β ∈ P⃗X [conc]
• ∀α ∈ P⃗X , ρ : I⃗ → I⃗ : α ◦ ρ ∈ P⃗X [rep-rest]

A morphism of d-spaces X , Y is f ∈ Top(X , Y ) such that ∀α ∈ P⃗X : f ◦ α ∈ P⃗Y .
Resulting category dTop is complete and cocomplete (and dLCHaus is cartesian closed).

S⃗1 O⃗1 C(S⃗1)

origin is
a vortex
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Directed (?) Intervals
Three types of intervals:
• I⃗: I = [0, 1] with usual order

• po-space; lpo-space
• as d-space: P⃗ I⃗: all monotone paths

• I: trivial order: x ≤ y iff x = y
• po-space; lpo-space
• as d-space: P⃗I: only constant paths

• Ĩ: chaotic d-space
• d-structure: P⃗ Ĩ: all paths
• not an lpo-space (every point is a vortex!), neither a po-space

I⃗ × I⃗ I⃗ × I I⃗ × Ĩ
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Directed Spaces, Summary

• po-spaces: partially ordered topological spaces: no loops, nice but restrictive
• lpo-spaces: locally partially ordered top. spaces: loops OK, difficult to work with
• d-spaces: top. spaces with distinguished paths: nice category, but include vortices
• (other models exist)

• po-spaces ↪→ lpo-spaces ↪→ d-spaces (not full as categories)
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Directed Paths and Homotopies

• the directed interval I⃗: ([0, 1],≤) (usual order): po-space
• dipaths in X : morphisms I⃗ → X
• for d-space (X , P⃗X ): dipaths =̂ P⃗X

• a dihomotopy H : Ĩ × I⃗ → X :
• all H(s, ·) dipaths
• H : I × I → X continuous
• H(·, 0) and H(·, 1) constant
• (some variants exist)
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The Fundamental Category

• central object in algebraic topology: the fundamental group of a space X
• for x ∈ X , π1(X , x) = {α : I → X | α(0) = α(1) = x} modulo homotopy
• captures all information on homotopy of paths / 1-dimensional holes

• in d-spaces, loops carry little information!

Definition (fundamental category)
The fundamental category π⃗1(X ) of a d-space X has as
• objects points x ∈ X ,
• morphisms π⃗1(X )(x , y) = {α : I⃗ → X | α(0) = x , α(1) = y} modulo dihomotopy
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The Fundamental Category
The fundamental cat π⃗1(X ) of a d-space X has as objects points x ∈ X and as
morphisms π⃗1(X )(x , y) = {α : I⃗ → X | α(0) = x , α(1) = y} modulo dihomotopy.

• related: fundamental groupoid of topological spaces (“blow-up” of fundamental
group)
• π⃗1(X ) is huge =⇒ identify components “where nothing happens”
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Summing Up

• A program is a directed topological space X
• po-space, lpo-space, d-space, etc.

• An execution is a directed path I⃗ → X
• Two executions are equivalent iff they are related by a dihomotopy Ĩ × I⃗ → X
• The fundamental category: useful invariant, but too big

• Directed homotopy equivalence; directed coverings; directed homology; directed
topological complexity; etc.
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Exercises!
Exercise 1: For each of the following objects: (1) make a drawing to understand it; (2)
decide where it is situated in the hierarchy po-space ↪→ lpo-space ↪→ d-space; (3) draw
a few dipaths.

1 The directed square I⃗ × I⃗
2 The “half-directed” square I⃗ × I, where I is the po-space with order

x ≤ y ⇐⇒ x = y
3 The “half-twiggly” square I⃗ × Ĩ, where Ĩ is the d-space with P⃗Ĩ = Top(I, I)
4 I × Ĩ
5 S⃗1, where S1 = {eit | 0 ≤ t ≤ 2π} ⊆ C is the unit circle and

eit1 ≤ eit2 ⇐⇒ 0 ≤ t2 − t1 mod 2π < π

6 O⃗1, where O1 = S1 and eit1 ≤ eit2 ⇐⇒ 0 ≤ t1 ≤ t2 ≤ π or π ≤ t2 ≤ t1 ≤ 2π

7 a finite automaton with language given by the regular expression a(b + c)a, seen as
a “geometric graph” where the vertices are points and the edges, unit intervals

8 a finite automaton with language given by the regular expression a(b + c)∗
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Exercises!

Exercise 2: Show that for any d-space X = (X , P⃗X ), P⃗X = dTop(⃗I, X ).

Exercise 3: Recall that in a po-space (X ,≤), the relation ≤ is required to be closed in
the product topology on X × X . Show that any po-space is Hausdorff.
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Exercises!
Exercise 4: Let X be the po-space-with-a-hole induced by the parallel composition of
the PV programs Pa Pb Vb Va and Pb Pa Va Vb. (We usually call it the Swiss Flag.)

1 How many dihomotopy classes of dipaths are there from initial to final state?
2 Say that a dipath α ∈ P⃗X is inessential if

• for all β ∈ P⃗X with β(0) = α(0) and α(1) ≤ β(1), there is γ ∈ P⃗X with
γ(0) = α(1) and γ(1) = β(1) such that β and α ∗ γ are dihomotopic;
• for all β ∈ P⃗X with β(1) = α(1) and β(0) ≤ α(0), there is γ ∈ P⃗X with

γ(1) = α(0) and γ(0) = β(0) such that β and γ ∗ α are dihomotopic.
The first condition says that if we can go from the beginning of α to some point
x = β(1), then we still can do so, and dihomotopically, once we have reached the end of
α: so taking α “does not make any choices”. (The second condition says the same, but
in reverse.)
Let ∼= be the equivalence relation induced on the points of X by the existence of
inessential dipaths. What does the partition of X into ∼=-equivalence classes look like?
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