

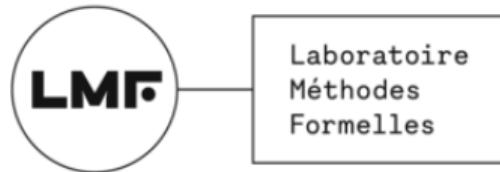
Discrete and Continuous Models for Concurrent Systems

1. The Geometry of Concurrency

Uli Fahrenberg

LMF, Université Paris-Saclay, France

POPL 2026 Tutorial, Rennes, France



Introduction

Discrete and Continuous Models for Concurrent Systems ?

Introduction

Discrete and Continuous Models for **Concurrent Systems**

Introduction

Discrete and Continuous Models for **Concurrent Systems**

- plane ticket reservation system
- fleet of robots
- your computer!

Introduction

Discrete and Continuous Models for Concurrent Systems

Introduction

Discrete and Continuous Models for Concurrent Systems

- networks of automata
- Petri nets
- event structures
- higher-dimensional automata

Introduction

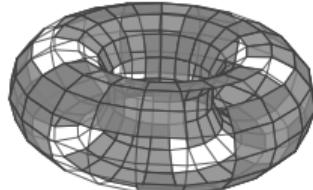
Discrete and **Continuous Models** for Concurrent Systems

Introduction

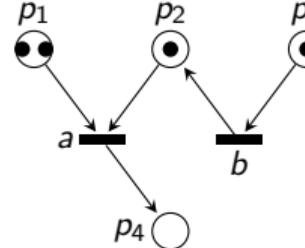
Discrete and **Continuous Models** for Concurrent Systems

- Variants of directed topological spaces

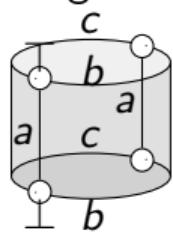
1. The geometry of concurrency



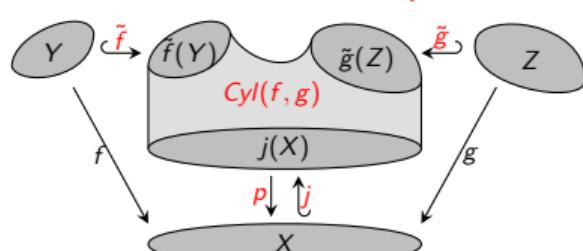
2. Concurrent semantics of Petri nets



3. Languages of higher-dimensional aut.



4. Advanced topics



Viinistu

Based on lectures given at the 2025 Estonian Winter School in Computer Science

1 Introduction

2 Geometric Semantics

3 Directed Algebraic Topology

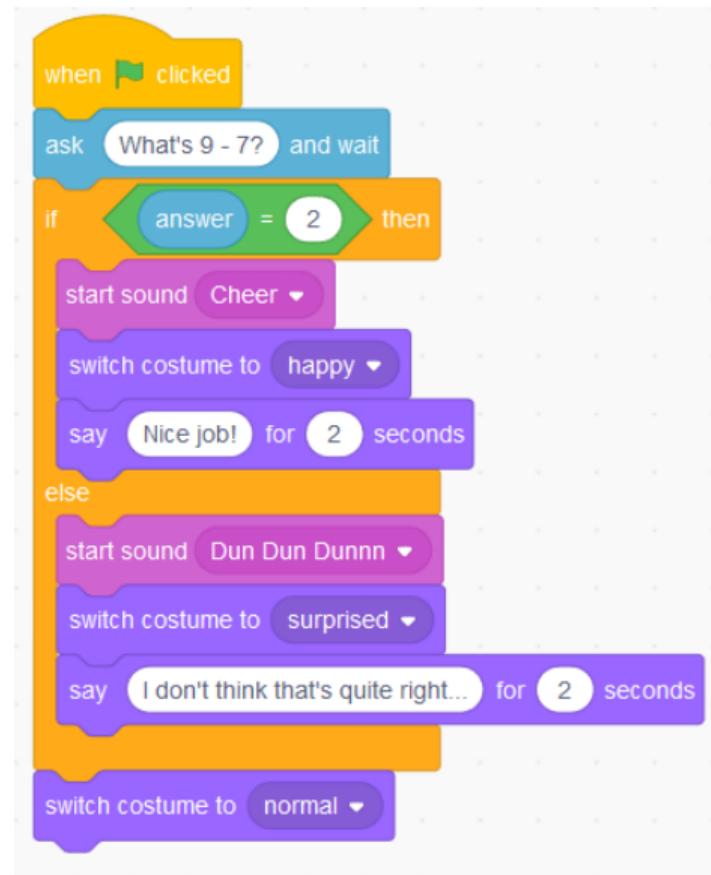
Algebraic View

A program is

- a sequence of instructions
- plus branches
- and loops

Kleene algebra: set S with

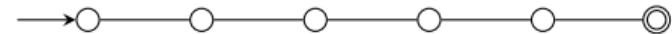
- concatenation \otimes
- choice \oplus
- repetition $*$
- idempotent semiring with unary $*$
which computes fixed points



Geometric View

A program is a sequence of instructions

- ignoring branches and loops for now

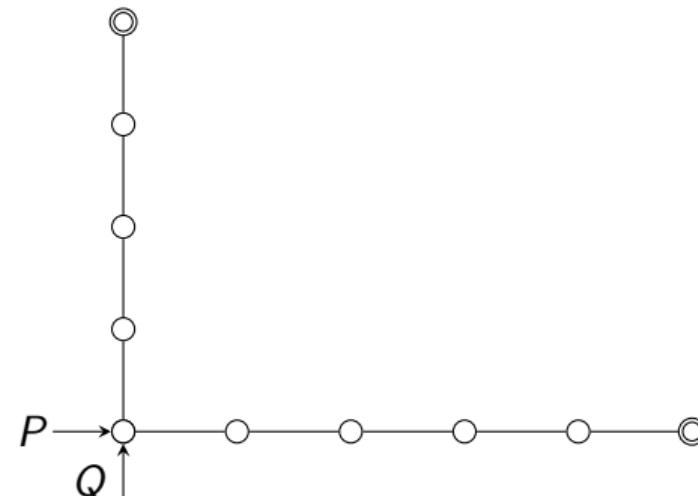


Geometric View

A program is a sequence of instructions

- ignoring branches and loops for now

Now, a second program in parallel:

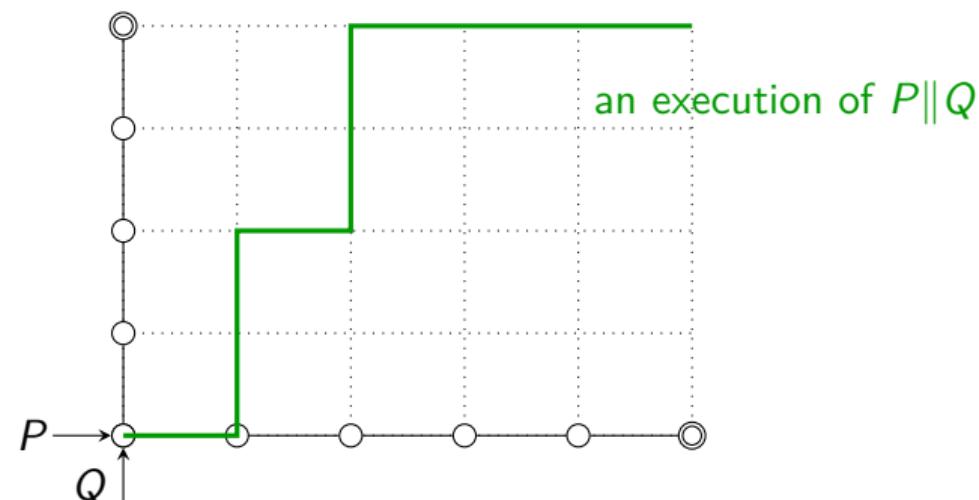


Geometric View

A program is a sequence of instructions

- ignoring branches and loops for now

Now, a second program in parallel:

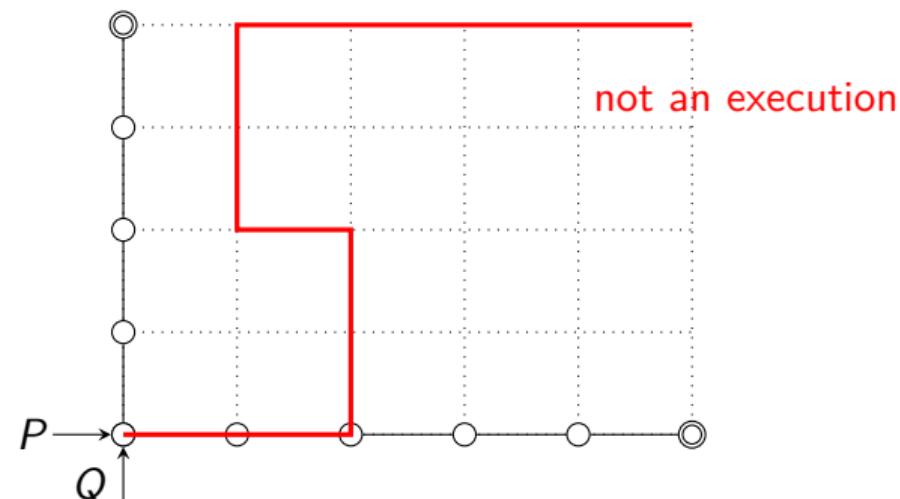


Geometric View

A program is a sequence of instructions

- ignoring branches and loops for now

Now, a second program in parallel:

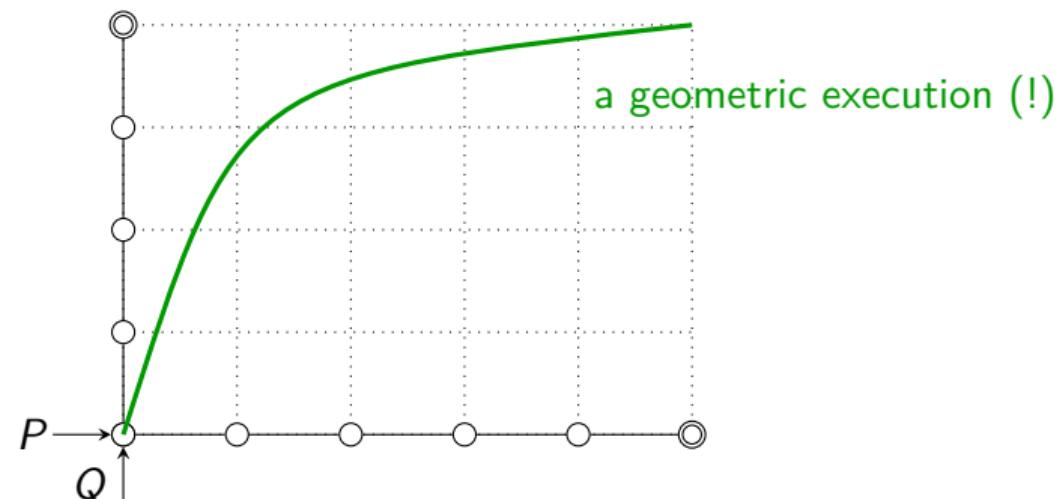


Geometric View

A program is a sequence of instructions

- ignoring branches and loops for now

Now, a second program in parallel:

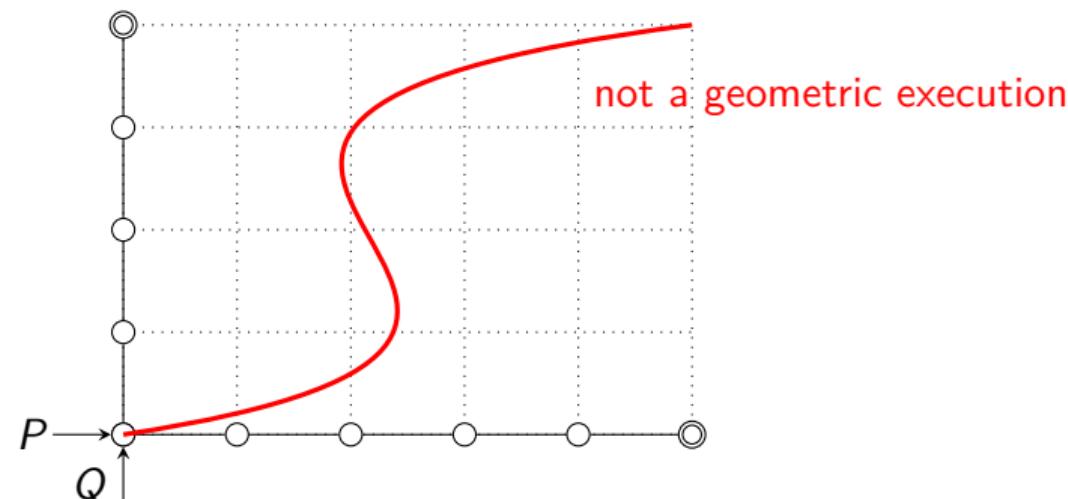


Geometric View

A program is a sequence of instructions

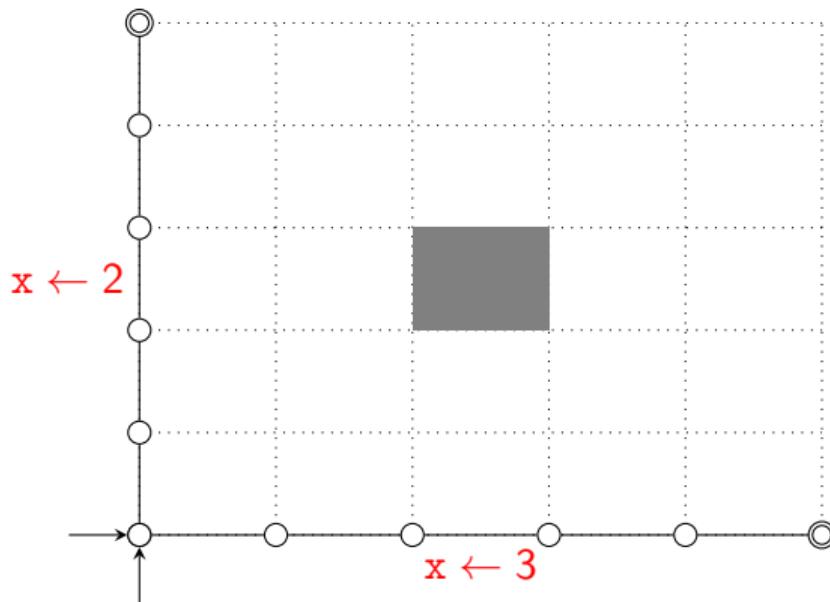
- ignoring branches and loops for now

Now, a second program in parallel:



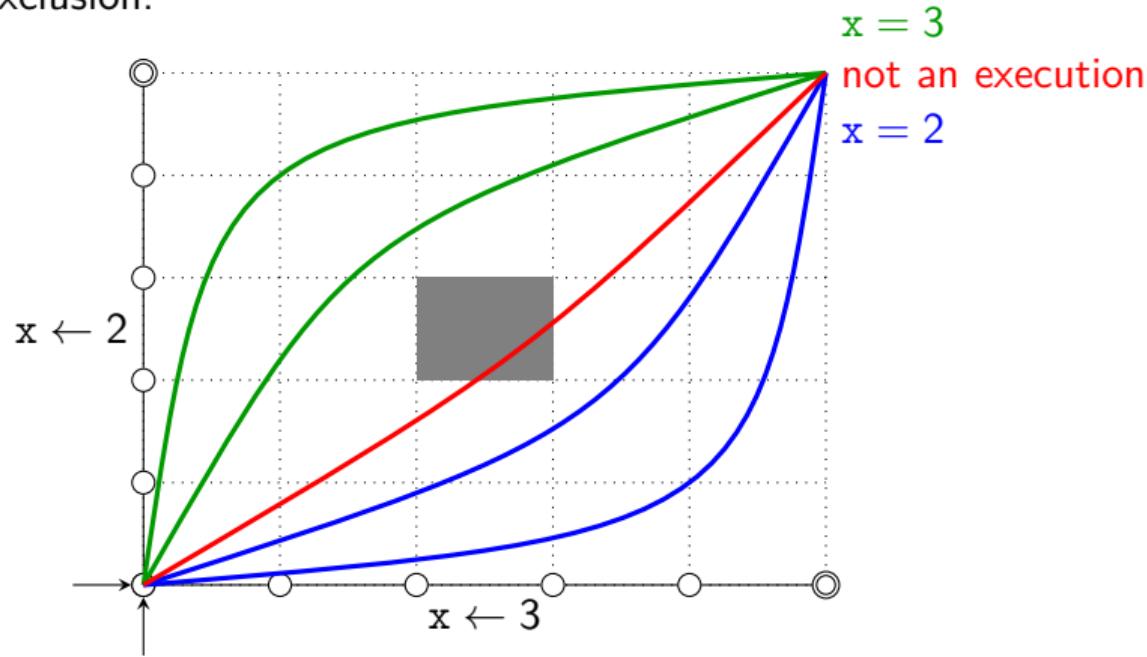
Holes

Adding mutual exclusion:



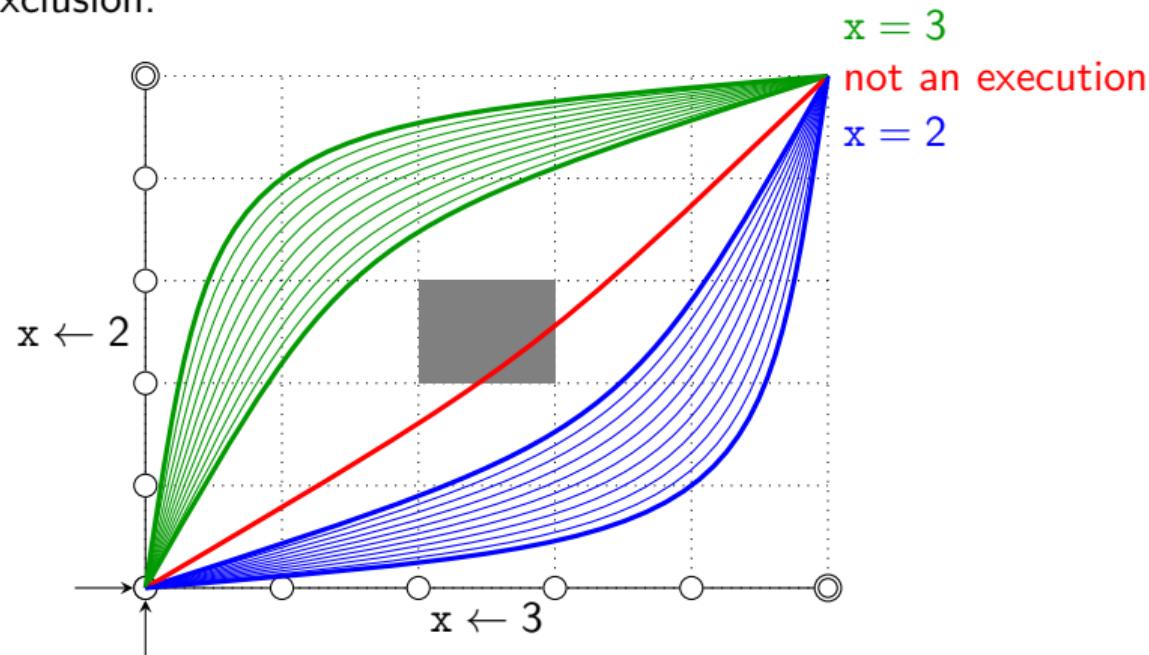
Holes

Adding mutual exclusion:



Holes

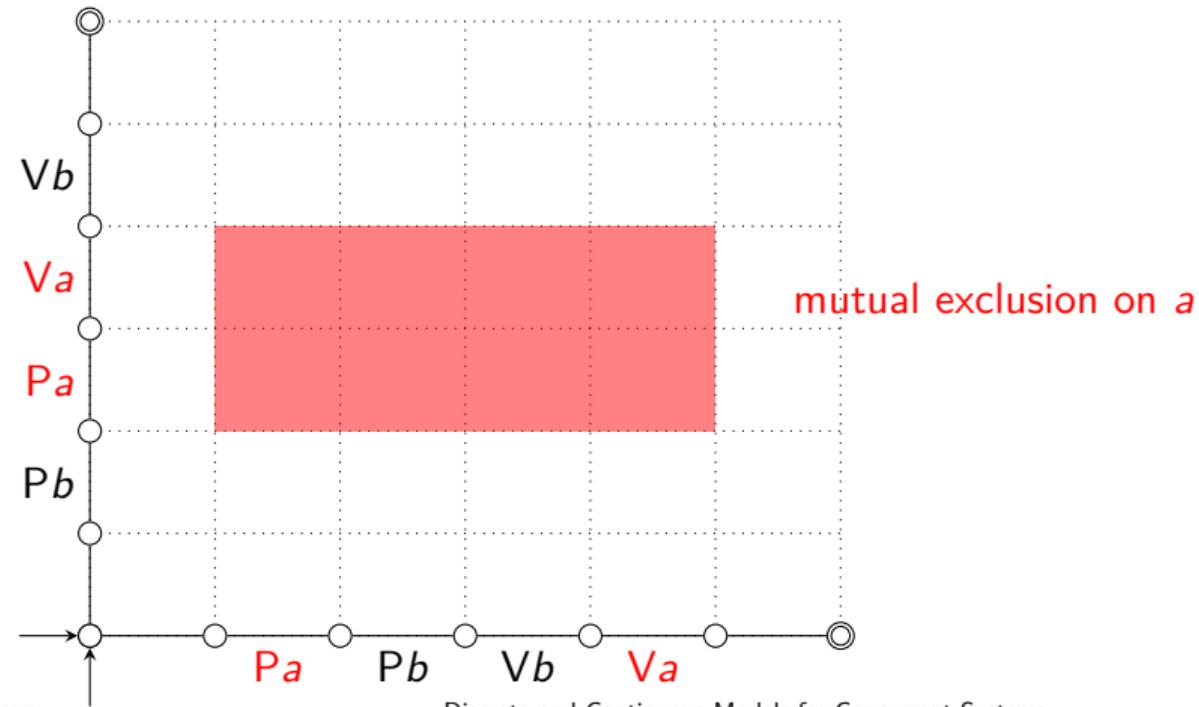
Adding mutual exclusion:



- homotopic paths $\hat{=}$ equivalent executions

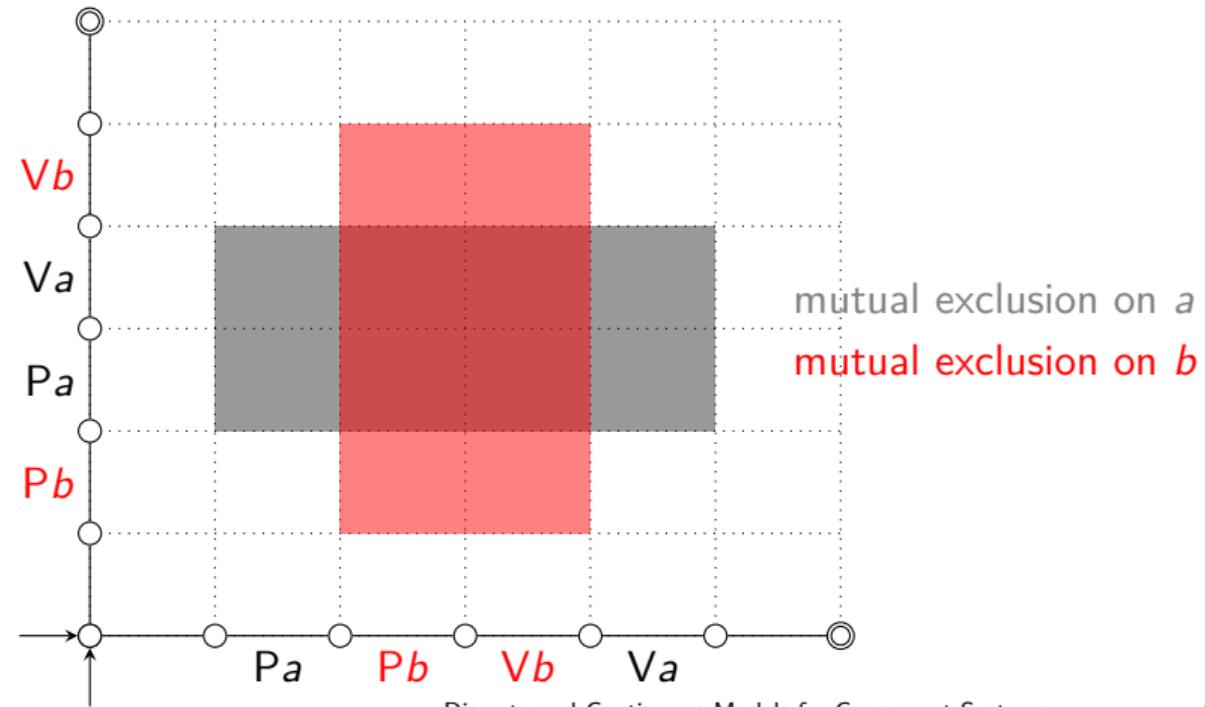
More Holes

Semaphores à la Dijkstra ($P \hat{=} \text{acquire}$; $V \hat{=} \text{release}$):



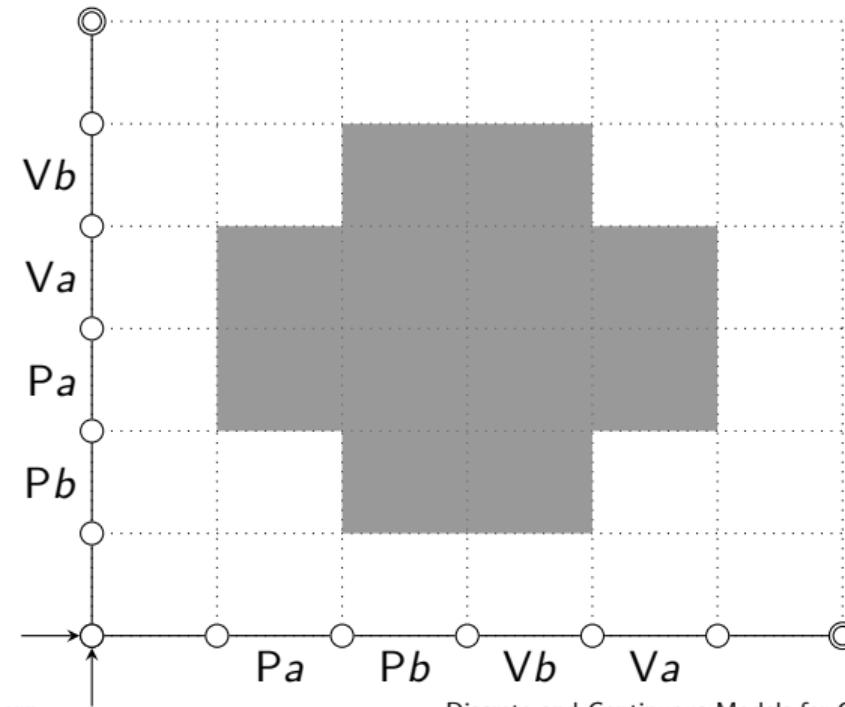
More Holes

Semaphores à la Dijkstra ($P \hat{=} \text{acquire}$; $V \hat{=} \text{release}$):



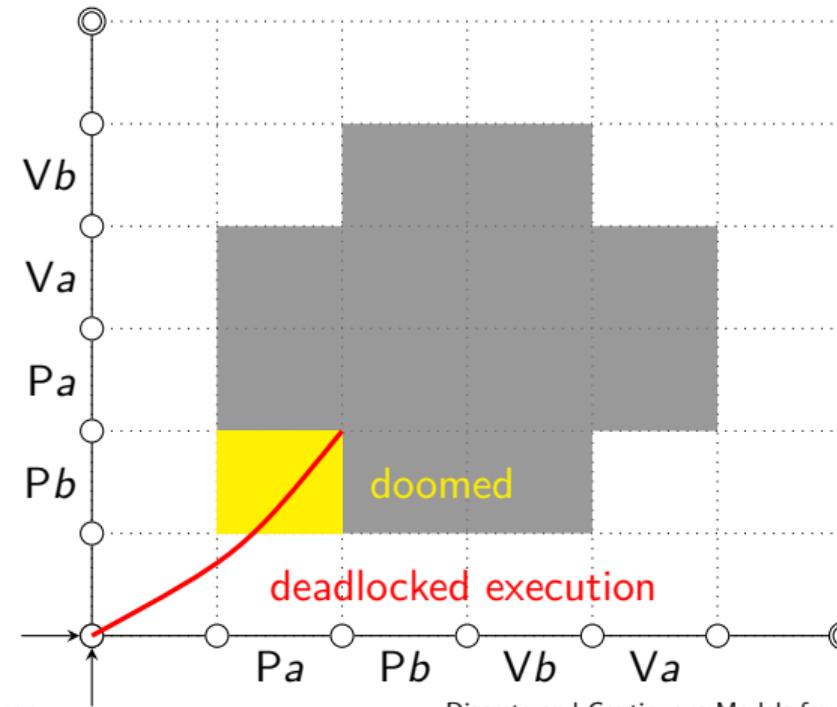
More Holes

Semaphores à la Dijkstra ($P \hat{=} \text{acquire}$; $V \hat{=} \text{release}$):



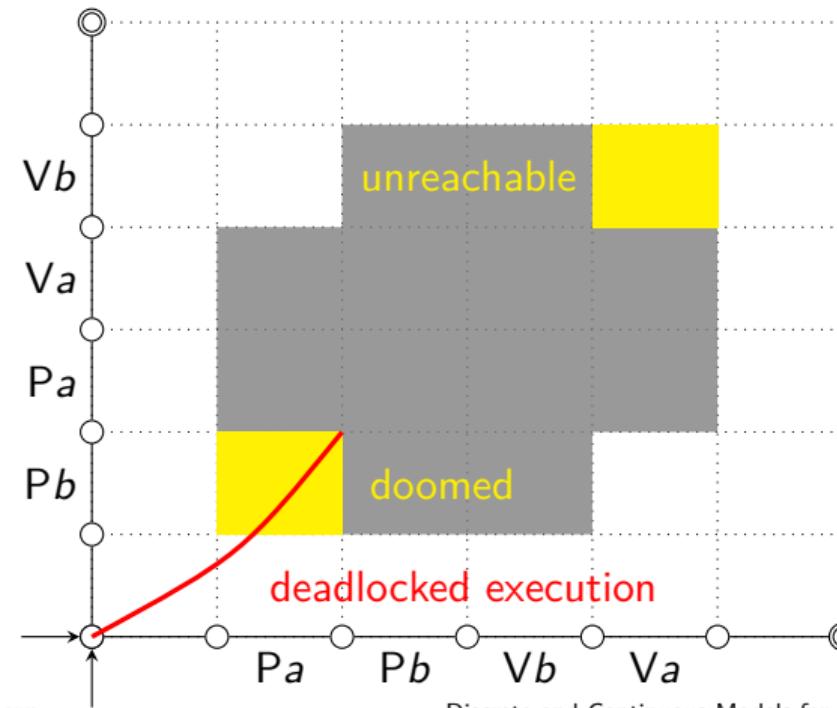
More Holes

Semaphores à la Dijkstra ($P \hat{=} \text{acquire}$; $V \hat{=} \text{release}$):

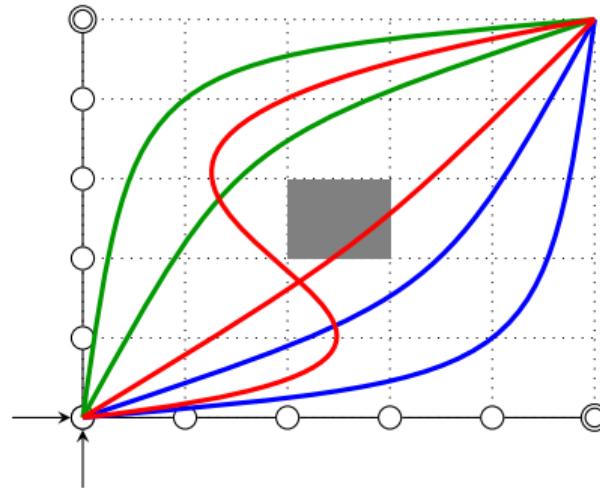


More Holes

Semaphores à la Dijkstra ($P \hat{=} \text{acquire}$; $V \hat{=} \text{release}$):

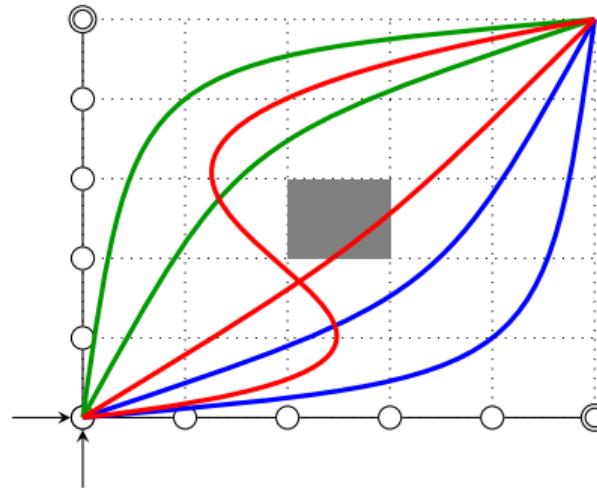


Summing Up



- A program is a topological space
- An execution is a path through said space
- Two executions are equivalent iff their paths are homotopic
- Deadlocks and unreachable states are concave corners

Summing Up



- A program is a **directed** topological space
- An execution is a **directed** path through said space
- Two executions are equivalent iff their **dipaths** are **dihomotopic**
- Deadlocks and unreachable states are concave corners

1 Introduction

2 Geometric Semantics

3 Directed Algebraic Topology

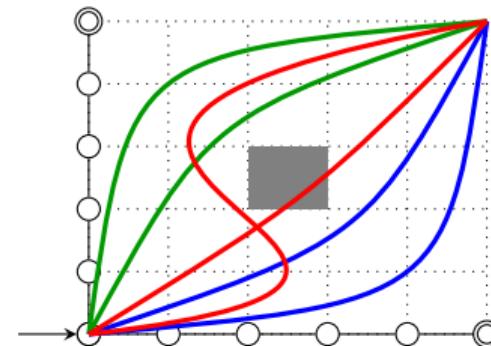
Directed Spaces

Definition (po-space)

A **partially ordered space** is a topological space X together with a partial order \leq on X such that $\leq \subseteq X \times X$ is *closed* in the product topology.

A **morphism** of po-spaces is a \leq -preserving continuous function.

- a **dipath** in a po-space is a continuous & monotone path
 - a morphism $\vec{I} \rightarrow X$
- directed interval $\vec{I} = [0, 1]$ with usual order
- directed square $\vec{I} \times \vec{I}$, cube, etc.
- concatenation \otimes , branching \oplus
- **no loops**



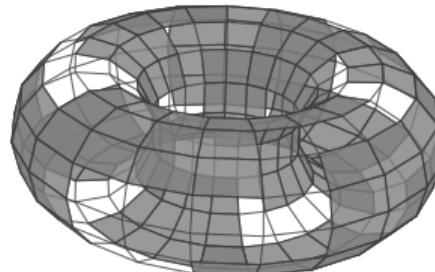
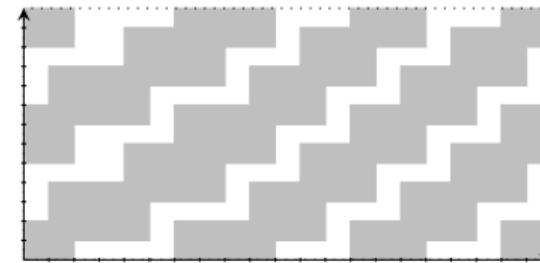
Directed Spaces

Definition (Ipo-space)

A **locally partially ordered space** is a *Hausdorff* topological space X together with a relation \leq on X in which any $x \in X$ has an open neighborhood $U \ni x$ such that the restriction of \leq to U is a closed partial order.

A **morphism** of po-spaces is a continuous function which is *locally* \leq -preserving.

- \leq may be taken globally reflexive and transitive



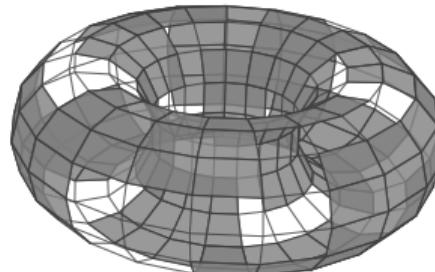
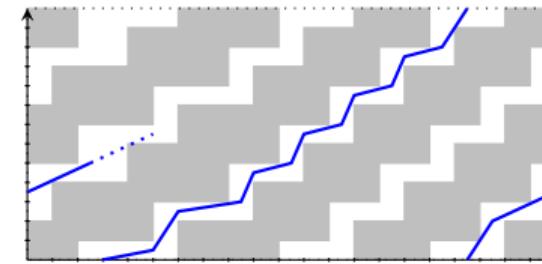
Directed Spaces

Definition (Ipo-space)

A **locally partially ordered space** is a *Hausdorff* topological space X together with a relation \leq on X in which any $x \in X$ has an open neighborhood $U \ni x$ such that the restriction of \leq to U is a closed partial order.

A **morphism** of po-spaces is a continuous function which is *locally* \leq -preserving.

- \leq may be taken globally reflexive and transitive
- a **dipath** is a morphism $\vec{I} \rightarrow X$



Directed Spaces

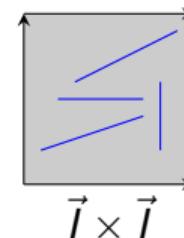
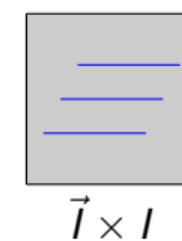
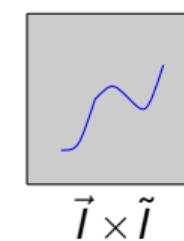
Definition (d-space)

A **directed space** is a topological space X together with a set $\vec{P}X$ of paths $I \rightarrow X$, called **directed paths**, such that

- all constant paths are directed,
- concatenations of directed paths are directed, and
- reparametrizations and restrictions of directed paths are directed.

A **morphism** of d-spaces is a continuous function which preserves directed paths.

- a **dipath** is a morphism $p : \vec{I} \rightarrow X$, equivalently $p \in \vec{P}X$



Directed Spaces

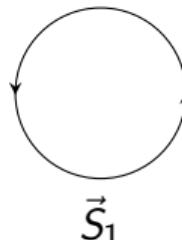
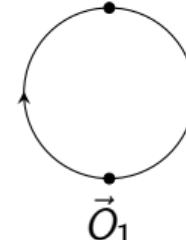
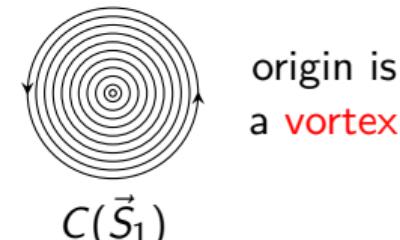
Definition (d-space; unpacked)

A **directed space** is a topological space X together with a set $\vec{P}X \subseteq \text{Top}(I, X)$ such that

- $\forall p \in X : \lambda x. p \in \vec{P}X$ [const]
- $\forall \alpha, \beta \in \vec{P}X : \alpha(1) = \beta(0) \implies \alpha * \beta \in \vec{P}X$ [conc]
- $\forall \alpha \in \vec{P}X, \rho : \vec{I} \rightarrow \vec{I} : \alpha \circ \rho \in \vec{P}X$ [rep-rest]

A **morphism** of d-spaces X, Y is $f \in \text{Top}(X, Y)$ such that $\forall \alpha \in \vec{P}X : f \circ \alpha \in \vec{P}Y$.

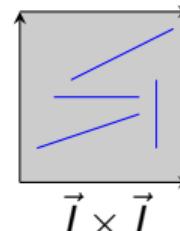
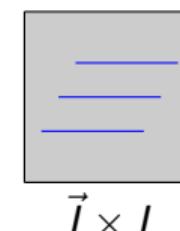
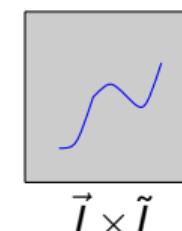
Resulting category $d\text{Top}$ is complete and cocomplete (and $d\text{LCHaus}$ is cartesian closed).



Directed (?) Intervals

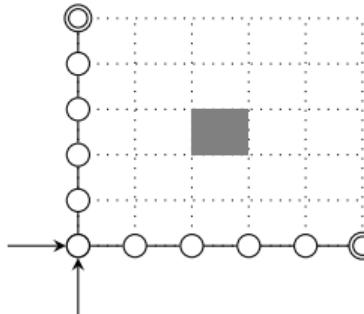
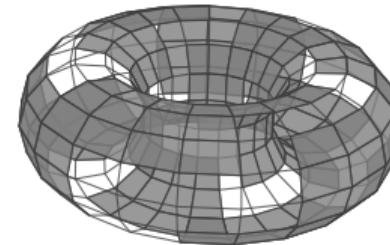
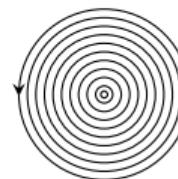
Three types of intervals:

- \vec{I} : $I = [0, 1]$ with **usual** order
 - po-space; lpo-space
 - as d-space: $\vec{P}\vec{I}$: all **monotone** paths
- I : **trivial** order: $x \leq y$ iff $x = y$
 - po-space; lpo-space
 - as d-space: $\vec{P}I$: only **constant** paths
- \tilde{I} : **chaotic** d-space
 - d-structure: $\vec{P}\tilde{I}$: **all** paths
 - not an lpo-space (every point is a vortex!), neither a po-space



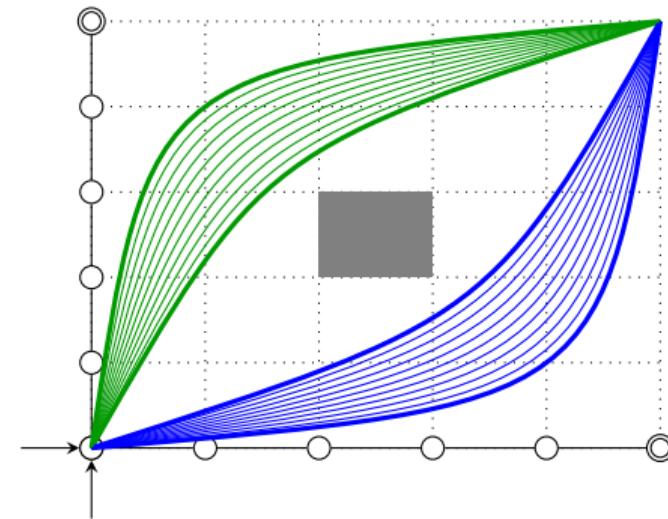
Directed Spaces, Summary

- **po-spaces**: partially ordered topological spaces: no loops, nice but restrictive
- **lpo-spaces**: locally partially ordered top. spaces: loops OK, difficult to work with
- **d-spaces**: top. spaces with distinguished paths: nice category, but include vortices
- (other models exist)
- po-spaces \hookrightarrow lpo-spaces \hookrightarrow d-spaces (not full as categories)



Directed Paths and Homotopies

- the **directed interval** \vec{I} : $([0, 1], \leq)$ (usual order): po-space
- **dipaths** in X : morphisms $\vec{I} \rightarrow X$
 - for d-space $(X, \vec{P}X)$: dipaths $\hat{=} \vec{P}X$
- a **dihomotopy** $H : \vec{I} \times \vec{I} \rightarrow X$:
 - all $H(s, \cdot)$ dipaths
 - $H : I \times I \rightarrow X$ continuous
 - $H(\cdot, 0)$ and $H(\cdot, 1)$ constant
 - (some variants exist)

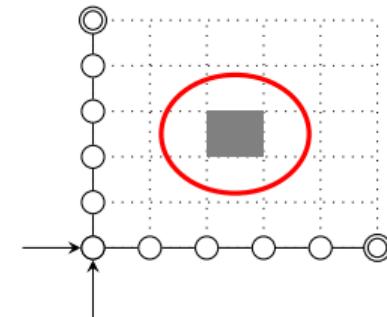


The Fundamental Category

- central object in algebraic topology: the **fundamental group** of a space X
- for $x \in X$, $\pi_1(X, x) = \{\alpha : I \rightarrow X \mid \alpha(0) = \alpha(1) = x\}$ modulo homotopy
- captures **all** information on homotopy of **paths** / 1-dimensional **holes**

The Fundamental Category

- central object in algebraic topology: the **fundamental group** of a space X
- for $x \in X$, $\pi_1(X, x) = \{\alpha : I \rightarrow X \mid \alpha(0) = \alpha(1) = x\}$ modulo homotopy
- captures **all** information on homotopy of **paths** / 1-dimensional **holes**
- in d-spaces, loops carry little information!



Definition (fundamental category)

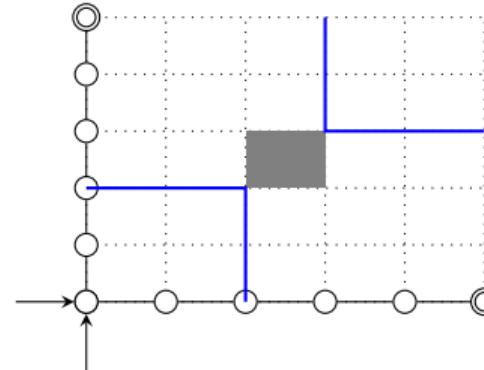
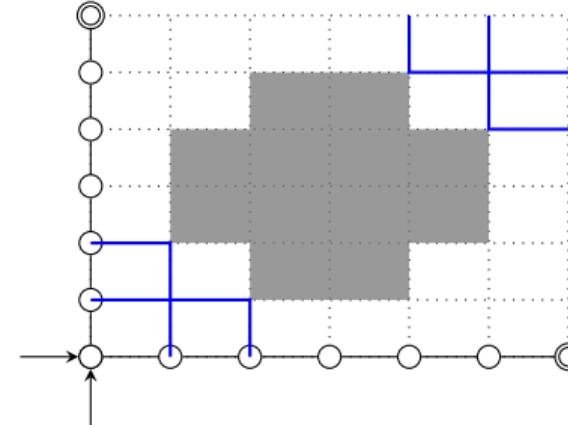
The **fundamental category** $\vec{\pi}_1(X)$ of a d-space X has as

- objects **points** $x \in X$,
- morphisms $\vec{\pi}_1(X)(x, y) = \{\alpha : \vec{I} \rightarrow X \mid \alpha(0) = x, \alpha(1) = y\}$ modulo dihomotopy

The Fundamental Category

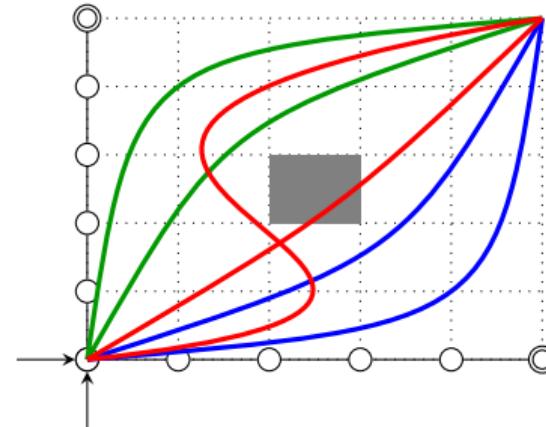
The **fundamental cat** $\vec{\pi}_1(X)$ of a d-space X has as **objects** points $x \in X$ and as **morphisms** $\vec{\pi}_1(X)(x, y) = \{\alpha : \vec{I} \rightarrow X \mid \alpha(0) = x, \alpha(1) = y\}$ modulo dihomotopy.

- related: **fundamental groupoid** of topological spaces (“blow-up” of fundamental group)
- $\vec{\pi}_1(X)$ is **huge** \implies identify **components** “where nothing happens”



Summing Up

- A program is a directed topological space X
 - po-space, lpo-space, d-space, etc.
- An execution is a directed path $\vec{I} \rightarrow X$
- Two executions are equivalent iff they are related by a dihomotopy $\vec{I} \times \vec{I} \rightarrow X$
- The fundamental category: useful invariant, but too big
- Directed homotopy equivalence; directed coverings; directed homology; directed topological complexity; etc.



Selected Bibliography

- L.Fajstrup, E.Goubault, E.Haucourt, S.Mimram, M.Raussén. *Directed algebraic topology and concurrency*. Springer 2016
- M.Grandis. *Directed algebraic topology*. Cambridge Univ.Press 2009
- R.Brown. *Topology and groupoids*. BookSurge 2006
- L.Fajstrup, E.Goubault, M.Raussén. *Detecting deadlocks in concurrent systems*. CONCUR 1998
- E.Goubault. *Geometry and concurrency: a user's guide*. Math.Struct.Comput.Sci. 2000
- L.Fajstrup, M.Raussén, E.Goubault, E.Haucourt. *Components of the fundamental category*. Appl.Categ.Struct. 2004
- L.Fajstrup, M.Raussén, E.Goubault. *Algebraic topology and concurrency*. Theor.Comput.Sci. 2006
- E.Haucourt. *Non-Hausdorff parallelized manifolds over geometric models of conservative programs*. Math.Struct.Comput.Sci. 2025

Exercises!

Exercise 1: For each of the following objects: (1) make a drawing to understand it; (2) decide where it is situated in the hierarchy $\text{po-space} \hookrightarrow \text{Ipo-space} \hookrightarrow \text{d-space}$; (3) draw a few dipaths.

- ① The directed square $\vec{I} \times \vec{I}$
- ② The “half-directed” square $\vec{I} \times I$, where I is the po-space with order
 $x \leq y \iff x = y$
- ③ The “half-twiggly” square $\vec{I} \times \tilde{I}$, where \tilde{I} is the d-space with $\tilde{P}\tilde{I} = \text{Top}(I, I)$
- ④ $I \times \tilde{I}$
- ⑤ \vec{S}_1 , where $S_1 = \{e^{it} \mid 0 \leq t \leq 2\pi\} \subseteq \mathbb{C}$ is the unit circle and
 $e^{it_1} \leq e^{it_2} \iff 0 \leq t_2 - t_1 \bmod 2\pi < \pi$
- ⑥ \vec{O}_1 , where $O_1 = S_1$ and $e^{it_1} \leq e^{it_2} \iff 0 \leq t_1 \leq t_2 \leq \pi$ or $\pi \leq t_2 \leq t_1 \leq 2\pi$
- ⑦ a finite automaton with language given by the regular expression $a(b + c)a$, seen as a “geometric graph” where the vertices are points and the edges, unit intervals
- ⑧ a finite automaton with language given by the regular expression $a(b + c)^*$

Exercises!

Exercise 2: Show that for any d-space $X = (X, \vec{P}X)$, $\vec{P}X = \text{dTop}(\vec{I}, X)$.

Exercise 3: Recall that in a po-space (X, \leq) , the relation \leq is required to be closed in the product topology on $X \times X$. Show that any po-space is Hausdorff.

Exercises!

Exercise 4: Let X be the po-space-with-a-hole induced by the parallel composition of the PV programs Pa Pb Vb Va and Pb Pa Va Vb . (We usually call it the Swiss Flag.)

- ① How many dihomotopy classes of dipaths are there from initial to final state?
- ② Say that a dipath $\alpha \in \vec{P}X$ is **inessential** if

- for all $\beta \in \vec{P}X$ with $\beta(0) = \alpha(0)$ and $\alpha(1) \leq \beta(1)$, there is $\gamma \in \vec{P}X$ with $\gamma(0) = \alpha(1)$ and $\gamma(1) = \beta(1)$ such that β and $\alpha * \gamma$ are dihomotopic;
- for all $\beta \in \vec{P}X$ with $\beta(1) = \alpha(1)$ and $\beta(0) \leq \alpha(0)$, there is $\gamma \in \vec{P}X$ with $\gamma(1) = \alpha(0)$ and $\gamma(0) = \beta(0)$ such that β and $\gamma * \alpha$ are dihomotopic.

The first condition says that if we can go from the beginning of α to some point $x = \beta(1)$, then we still can do so, and dihomotopically, once we have reached the end of α : so taking α “does not make any choices”. (The second condition says the same, but in reverse.)

Let \cong be the equivalence relation induced on the points of X by the existence of inessential dipaths. What does the partition of X into \cong -equivalence classes look like?