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® plane ticket reservation system
¢ fleet of robots

® your computer!
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® networks of automata
® Petri nets
® event structures

® higher-dimensional automata

Uli Fahrenberg Discrete and Continuous Models for Concurrent Systems 6 /42



Introduction Geometric Semantics Directed Algebraic Topology
@00 000000 0000000000000 00

Introduction

Discrete and Continuous Models for Concurrent Systems

Uli Fahrenberg Discrete and Continuous Models for Concurrent Systems 7/ 42



Introduction Geometric Semantics Directed Algebraic Topology
@00 000000 0000000000000 00

Introduction

Discrete and Continuous Models for Concurrent Systems
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2. Concurrent semantics of Petri nets
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Based on lectures given at the 2025 Estonian Winter School in Computer Science
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Algebraic View

A program is
® 3 sequence of instructions
® plus branches

® and loops

Kleene algebra: set S with
® concatenation ®
® choice @

® repetition *

idempotent semiring with unary *
which computes fixed points
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Geometric View

A program is a sequence of instructions

® ignoring branches and loops for now
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Geometric View

A program is a sequence of instructions
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® ignoring branches and loops for now
Now, a second program in parallel:
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A program is a sequence of instructions

® ignoring branches and loops for now

Now, a second program in parallel:
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Geometric View

A program is a sequence of instructions

® ignoring branches and loops for now

Now, a second program in parallel:
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Geometric View

A program is a sequence of instructions
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® ignoring branches and loops for now

Now, a second program in parallel:

a geometric execution (!)

P
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Geometric View

A program is a sequence of instructions
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® ignoring branches and loops for now

Now, a second program in parallel:

not a: geometric execution

O O O
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Holes

Adding mutual exclusion:

@ S
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Holes

Adding mutual exclusion: =3

“““““““““““““““““““““““““““ : not an execution
‘ ; x=2
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Holes

Adding mutual exclusion: =3

not an execution
x =2

® homotopic paths = equivalent executions
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Semaphores a la Dijkstra (P = acquire; V = release):
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More Holes

Semaphores a la Dijkstra (P = acquire; V = release):
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More Holes

Semaphores a la Dijkstra (P = acquire; V = release):

Vb unreachable

Pb doomed

deaéilocked execui:ion

Pa Pb Vb Va
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Summing Up

® A program is a topological space
® An execution is a path through said space

® Two executions are equivalent iff their paths are homotopic

Deadlocks and unreachable states are concave corners
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Summing Up

® A program is a directed topological space
® An execution is a directed path through said space

® Two executions are equivalent iff their dipaths are dihomotopic

Deadlocks and unreachable states are concave corners

Uli Fahrenberg Discrete and Continuous Models for Concurrent Systems 28 / 42



Introduction Geometric Semantics Directed Algebraic Topology
000 000000 0000000000000 00

@ Introduction

@® Geometric Semantics

© Directed Algebraic Topology

Uli Fahrenberg Discrete and Continuous Models for Concurrent Systems 29 / 42



Introduction Geometric Semantics Directed Algebraic Topology
000 000000 0®0000000000000

Directed Spaces

Definition (po-space)

A partially ordered space is a topological space X together with a partial order < on X
such that < C X x X is closed in the product topology.

A morphism of po-spaces is a <-preserving continuous function.

a dipath in a po-space is a continuous & monotone path
® a morphism I — X

directed interval I = [0, 1] with usual order

directed square I'x T, cube, etc.

® concatenation ®, branching &

® no loops
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Directed Spaces

Definition (lpo-space)
A locally partially ordered space is a Hausdorff topological space X together with a
relation < on X in which any x € X has an open neighborhood U > x such that the

restriction of < to U is a closed partial order.
A morphism of po-spaces is a continuous function which is locally <-preserving.

e < may be taken globally reflexive and transitive
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Directed Spaces

Definition (lpo-space)
A locally partially ordered space is a Hausdorff topological space X together with a
relation < on X in which any x € X has an open neighborhood U > x such that the

restriction of < to U is a closed partial order.
A morphism of po-spaces is a continuous function which is locally <-preserving.

e < may be taken globally reflexive and transitive

® 3 dipath is a morphism I— X
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Directed Spaces

Definition (d-space)
A directed space is a topological space X together with a set PX of paths I — X, called
directed paths, such that

® all constant paths are directed,

® concatenations of directed paths are directed, and

® reparametrizations and restrictions of directed paths are directed.

A morphism of d-spaces is a continuous function which preserves directed paths.

® 3 dipath is a morphism p : I — X, equivalently p € PX

= = e

IxT I x| TxT
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Directed Spaces

Definition (d-space; unpacked)
A directed space is a topological space X together with a set PX C Top(/, X) such that

° Vpe X:Ax.pe PX [const]
° Vo, B € PX:a(l)=B(0) = axfBePX [conc]
eVaePX,p:[—1:a0pe PX [rep-rest]

A morphism of d-spaces X, Y is f € Top(X, Y) such that Va € PX:foac PY.

Resulting category dTop is complete and cocomplete (and dLCHaus is cartesian closed).

origin is
a vortex

— —

5 O1 C(51)
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Directed (?) Intervals

Three types of intervals:

e [ 1 =[0,1] with usual order
® po-space; Ipo-space
® as d-space: PI- all monotone paths

® [ trivial order: x <y iff x =y
® po-space; Ipo-space
® as d-space: PI: only constant paths

e J: chaotic d-space
e d-structure: PJ: all paths
® not an Ipo-space (every point is a vortex!), neither a po-space

/ _
= — I

TxT I I xT
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Directed Spaces, Summary

® po-spaces: partially ordered topological spaces: no loops, nice but restrictive
® |po-spaces: locally partially ordered top. spaces: loops OK, difficult to work with
® d-spaces: top. spaces with distinguished paths: nice category, but include vortices

¢ (other models exist)

® po-spaces < |po-spaces < d-spaces (not full as categories)
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Directed Paths and Homotopies

* the directed interval I: ([0, 1], <) (usual order): po-space
® dipaths in X: morphisms =X
® for d-space (X, PX): dipaths = PX

® a3 dihomotopy H : TxT— X:
e all H(s, ) dipaths
® H:|x|— X continuous
® H(-,0) and H(-,1) constant

® (some variants exist)
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The Fundamental Category

® central object in algebraic topology: the fundamental group of a space X
o for x € X, m(X,x) ={a:1— X|a(0) =a(l) = x} modulo homotopy

® captures all information on homotopy of paths / 1-dimensional holes
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The Fundamental Category

central object in algebraic topology: the fundamental group of a space X

for x € X, m(X,x) ={a: 1 — X | a(0) = a(l) = x} modulo homotopy

® captures all information on homotopy of paths / 1-dimensional holes

® in d-spaces, loops carry little information!

Definition (fundamental category)

The fundamental category 71(X) of a d-space X has as
® objects points x € X,
e morphisms 71(X)(x,y) = {a: I — X | a(0) = x,a(1) = y} modulo dihomotopy
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The Fundamental Category
The fundamental cat 71(X) ofg d-space X has as objects points x € X and as
morphisms 71(X)(x,y) = {a: I — X | a(0) = x,a(1) = y} modulo dihomotopy.

® related: fundamental groupoid of topological spaces (“blow-up” of fundamental
group)
e 71(X) is huge = identify components “where nothing happens”
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Summing Up

A program is a directed topological space X
® po-space, Ipo-space, d-space, etc.

An execution is a directed path - X
e Two executions are equivalent iff they are related by a dihomotopy T x =X

The fundamental category: useful invariant, but too big

Directed homotopy equivalence; directed coverings; directed homology; directed
topological complexity; etc.
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Exercises!

Exercise 1: For each of the following objects: (1) make a drawing to understand it; (2)
decide where it is situated in the hierarchy po-space < Ipo-space < d-space; (3) draw
a few dipaths.
@ The directed square IxT
® The "half-directed” square I x I, where [ is the po-space with order
XLy < x=y
© The “half-twiggly” square I x I, where I is the d-space with Fi = Top(/, 1)
o/ x|
@ S;, where S; = {et | 0 < t <27} C C is the unit circle and
et <e? = 0<th—t; mod2nr <
® O, where O; = S;and et < ef2 = 0<ty<tr<morn<th<t <2r
@ a finite automaton with language given by the regular expression a(b + c)a, seen as
a “geometric graph” where the vertices are points and the edges, unit intervals
@ a finite automaton with language given by the regular expression a(b + ¢)*
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Exercises!

Exercise 2: Show that for any d-space X = (X, PX), PX = dTop(/, X).

Exercise 3: Recall that in a po-space (X, <), the relation < is required to be closed in
the product topology on X x X. Show that any po-space is Hausdorff.
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Exercises!

Exercise 4: Let X be the po-space-with-a-hole induced by the parallel composition of
the PV programs Pa Pb Vb Va and Pb Pa Va Vb. (We usually call it the Swiss Flag.)
® How many dihomotopy classes of dipaths are there from initial to final state?
® Say that a dipath «a € PX is inessential if
e for all # € PX with 3(0) = a(0) and a(1) < (1), there is v € PX with
~v(0) = a(1) and (1) = B(1) such that 5 and « *  are dihomotopic;
e for all B € PX with 3(1) = a(1) and 5(0) < a(0), there is v € PX with
(1) = «(0) and v(0) = 5(0) such that 8 and v * « are dihomotopic.
The first condition says that if we can go from the beginning of « to some point
x = B(1), then we still can do so, and dihomotopically, once we have reached the end of
a: so taking « “does not make any choices”. (The second condition says the same, but
in reverse.)
Let = be the equivalence relation induced on the points of X by the existence of
inessential dipaths. What does the partition of X into =-equivalence classes look like?
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