

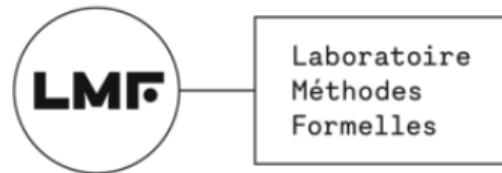
Discrete and Continuous Models for Concurrent Systems

2. Concurrent Semantics of Petri Nets

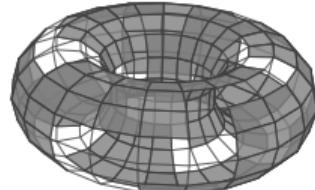
Uli Fahrenberg

LMF, Université Paris-Saclay, France

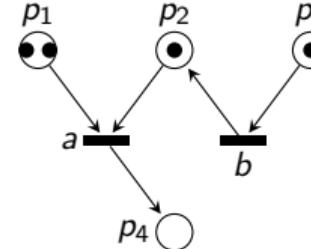
POPL 2026 Tutorial, Rennes, France



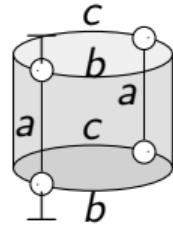
1. The geometry of concurrency



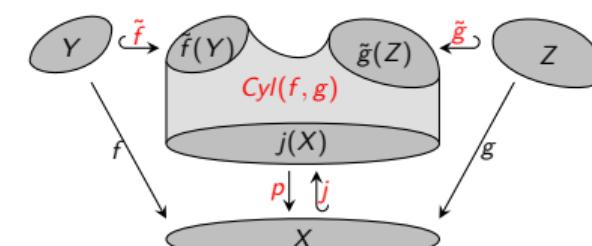
2. Concurrent semantics of Petri nets



3. Languages of higher-dimensional aut.



4. Advanced topics



1 Introduction

2 Petri Nets

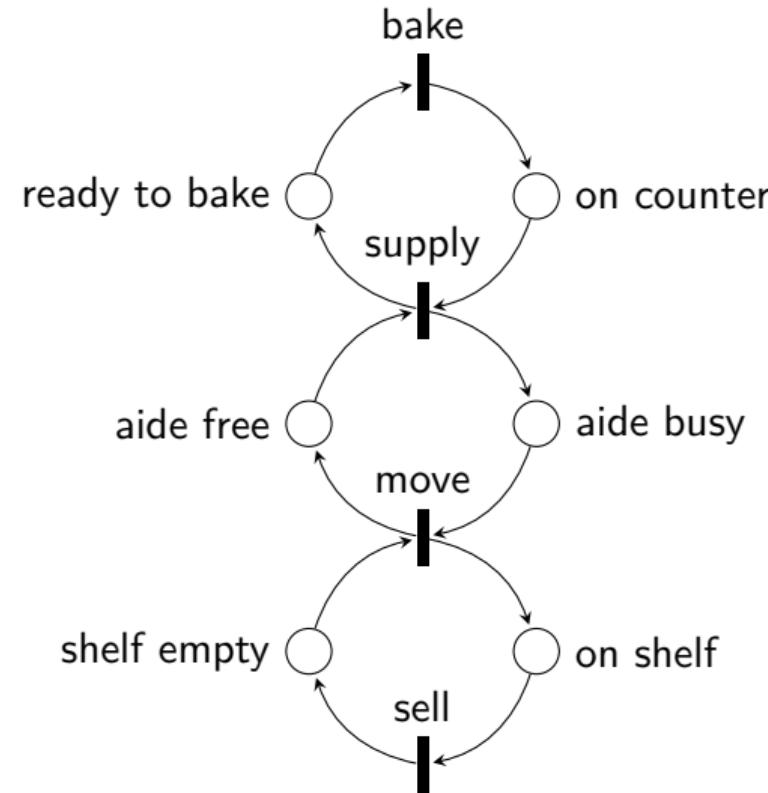
3 Higher-Dimensional Automata

4 Concurrent Semantics of Petri Nets

Petri Nets

A **Petri net** (S, T, F) :

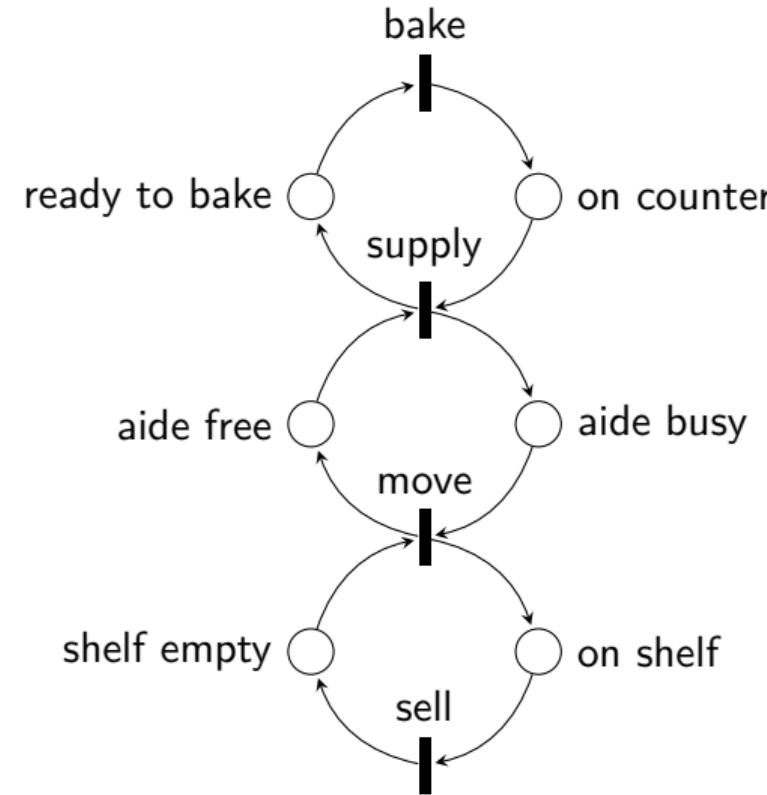
- S set of **places**
- T set of **transitions**, $S \cap T = \emptyset$
- $F \subseteq S \times T \cup T \times S$ **flow** relation
- very useful for modeling distributed or concurrent systems
- invented in 1962; ubiquitous in modeling



Petri Nets

A **Petri net** (S, T, F) :

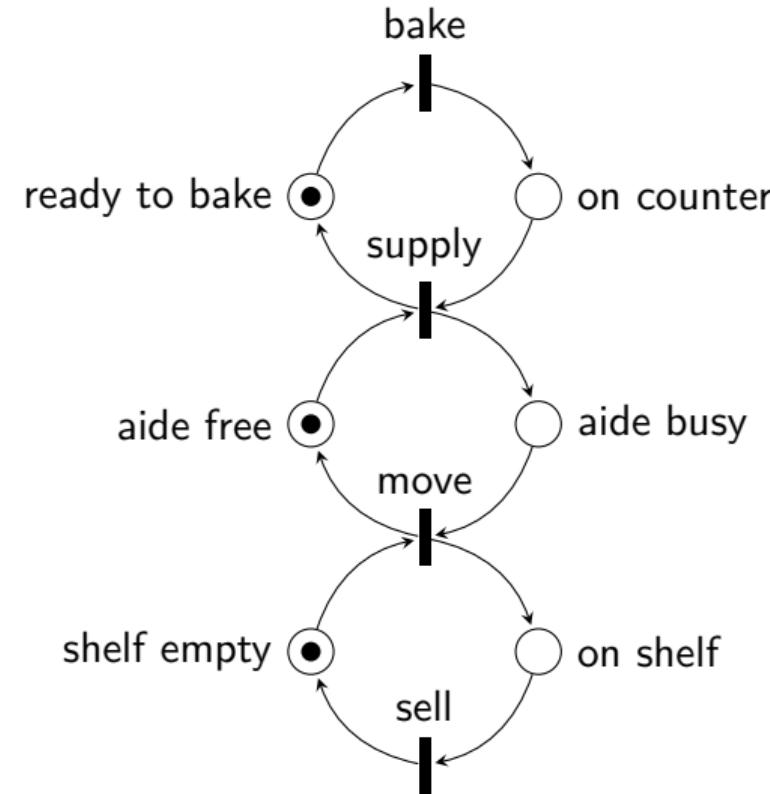
- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F : S \times T \cup T \times S \rightarrow \mathbb{N}$
weighted flow relation



Petri Nets

A **Petri net** (S, T, F) :

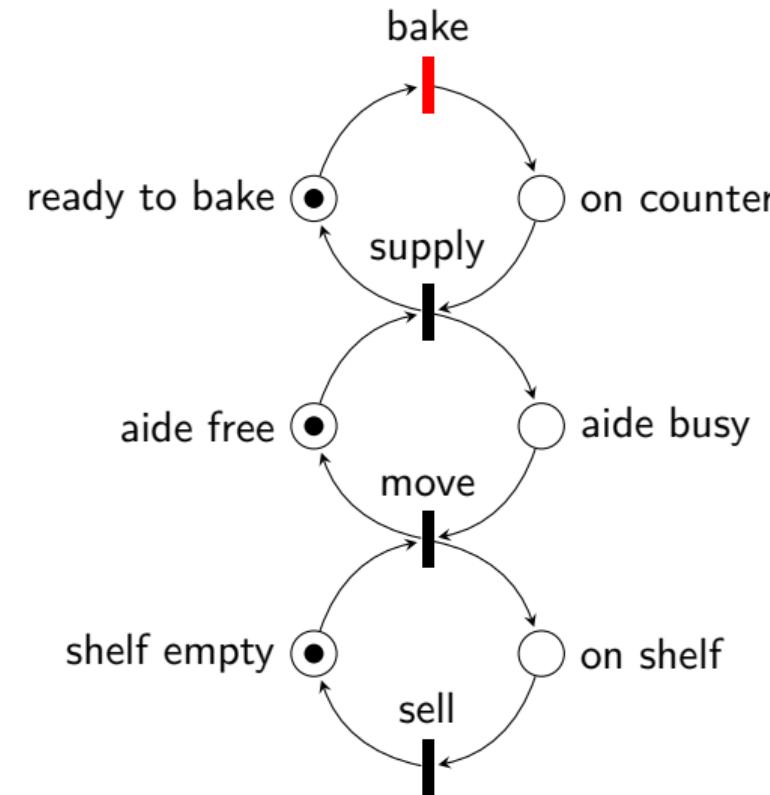
- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F : S \times T \cup T \times S \rightarrow \mathbb{N}$
weighted flow relation
- **marking**: $S \rightarrow \mathbb{N}$:
number of **tokens** per place
- **preset** of t : $\bullet t = F(s, t)$
- **postset** of t : $t^\bullet(s) = F(t, s)$



Petri Nets

A Petri net (S, T, F) :

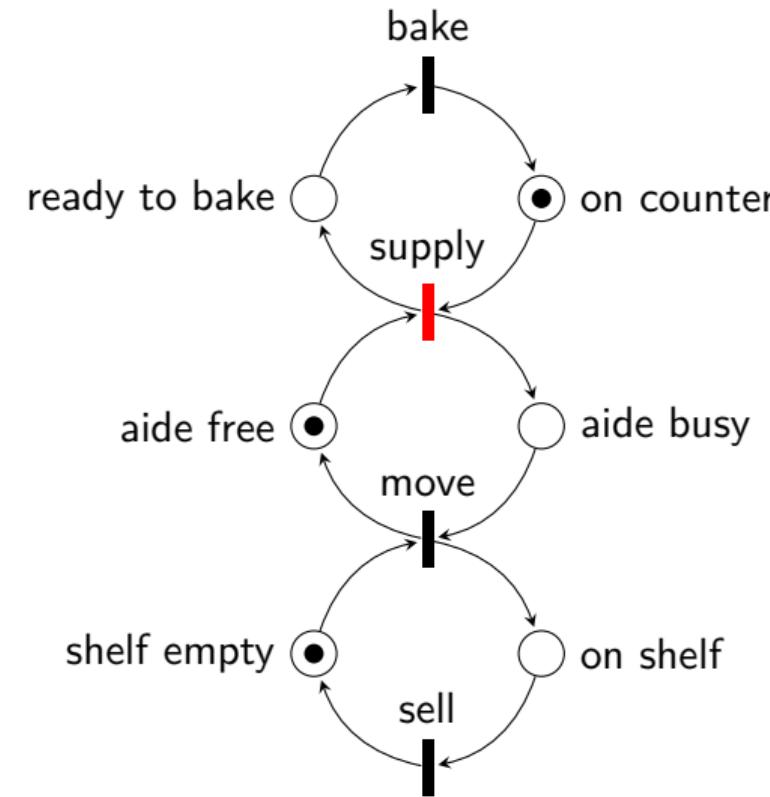
- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F : S \times T \cup T \times S \rightarrow \mathbb{N}$
weighted flow relation
- marking: $S \rightarrow \mathbb{N}$:
number of tokens per place
- preset of t : $\bullet t = F(s, t)$
- postset of t : $t^\bullet(s) = F(t, s)$
- compute by transforming markings:
$$m' = m - \bullet t + t^\bullet$$
- only if $\bullet t \leq m$



Petri Nets

A Petri net (S, T, F) :

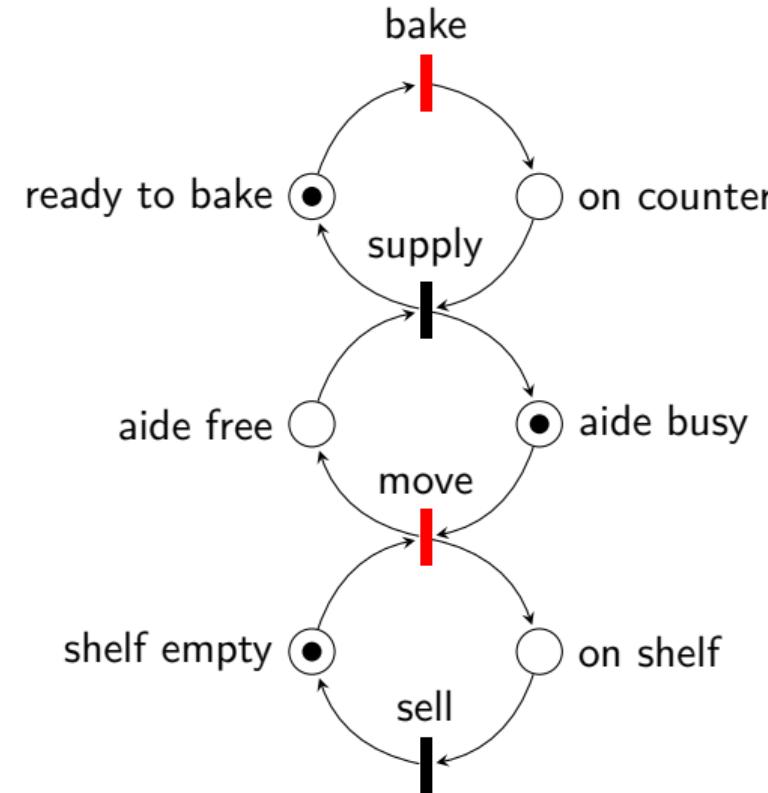
- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F : S \times T \cup T \times S \rightarrow \mathbb{N}$
weighted flow relation
- marking: $S \rightarrow \mathbb{N}$:
number of tokens per place
- preset of t : $\bullet t = F(s, t)$
- postset of t : $t^\bullet(s) = F(t, s)$
- compute by transforming markings:
$$m' = m - \bullet t + t^\bullet$$
- only if $\bullet t \leq m$



Petri Nets

A Petri net (S, T, F) :

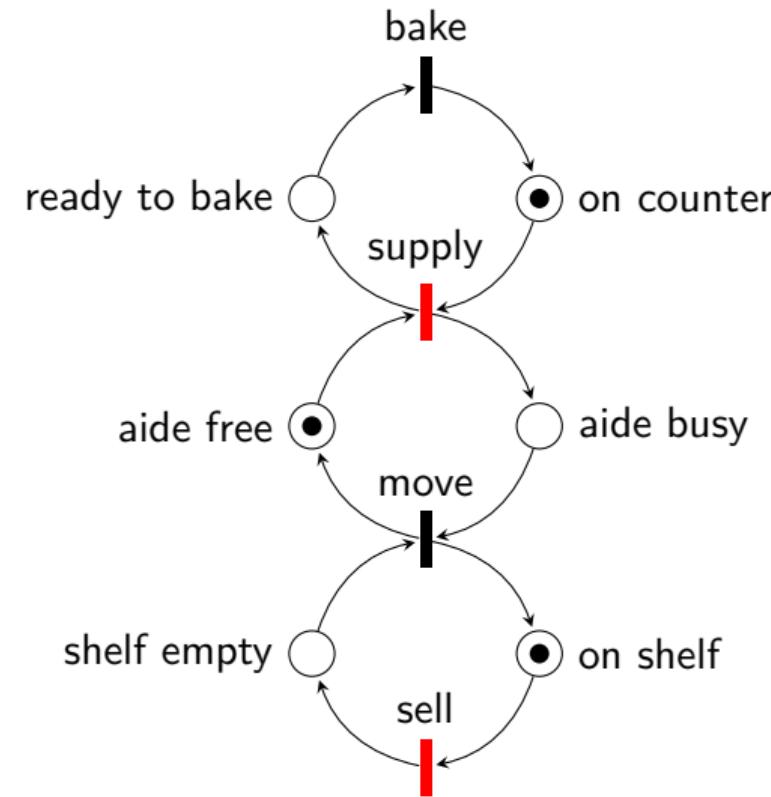
- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F : S \times T \cup T \times S \rightarrow \mathbb{N}$
weighted flow relation
- marking: $S \rightarrow \mathbb{N}$:
number of tokens per place
- preset of t : $\bullet t = F(s, t)$
- postset of t : $t^\bullet(s) = F(t, s)$
- compute by transforming markings:
$$m' = m - \bullet t + t^\bullet$$
- only if $\bullet t \leq m$



Petri Nets

A Petri net (S, T, F) :

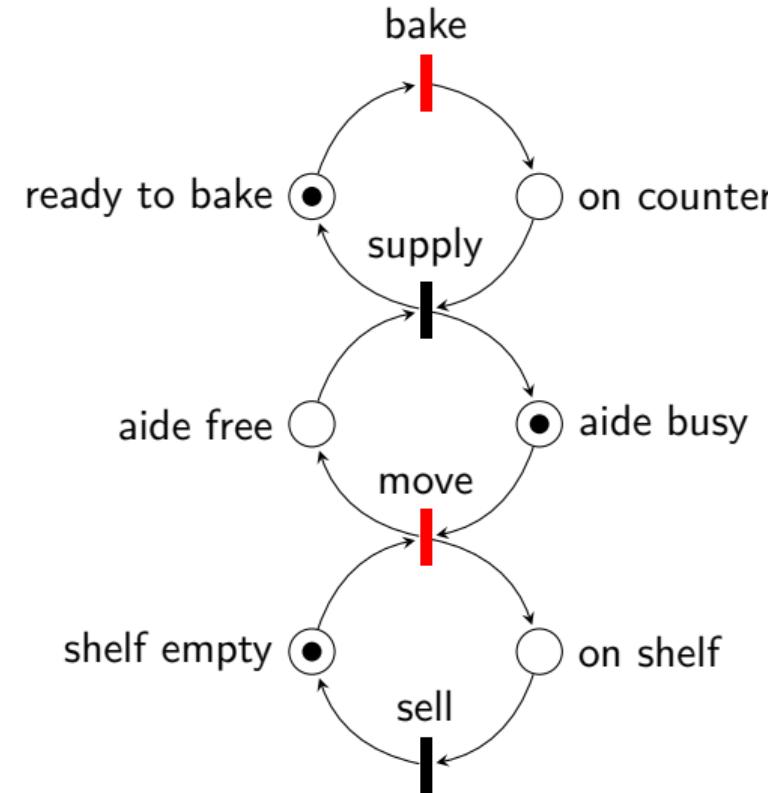
- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F : S \times T \cup T \times S \rightarrow \mathbb{N}$
weighted flow relation
- marking: $S \rightarrow \mathbb{N}$:
number of tokens per place
- preset of t : $\bullet t = F(s, t)$
- postset of t : $t^\bullet(s) = F(t, s)$
- compute by transforming markings:
$$m' = m - \bullet t + t^\bullet$$
- only if $\bullet t \leq m$



Petri Nets

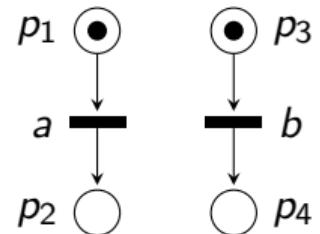
A Petri net (S, T, F) :

- S set of places
- T set of transitions, $S \cap T = \emptyset$
- $F : S \times T \cup T \times S \rightarrow \mathbb{N}$
weighted flow relation
- marking: $S \rightarrow \mathbb{N}$:
number of tokens per place
- preset of t : $\bullet t = F(s, t)$
- postset of t : $t^\bullet(s) = F(t, s)$
- compute by transforming markings:
$$m' = m - \bullet t + t^\bullet$$
- only if $\bullet t \leq m$



Semantics of Petri Nets

Petri net (S, T, F) : places S ; transitions T ;
weighted flows $F : S \times T \cup T \times S \rightarrow \mathbb{N}$

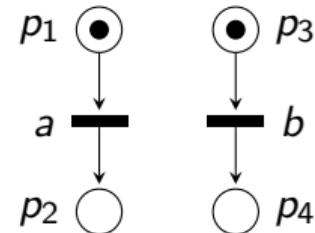
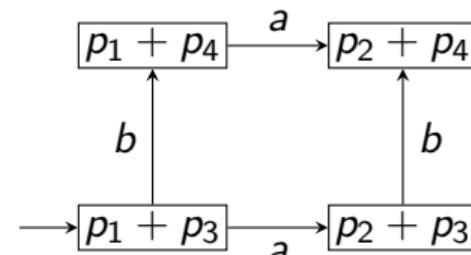


Semantics of Petri Nets

Petri net (S, T, F) : places S ; transitions T ;
weighted flows $F : S \times T \cup T \times S \rightarrow \mathbb{N}$

Interleaved semantics (reachability graph) (V, E) :

- $V = \mathbb{N}^S$: all markings
- $E \subseteq V \times T \times V$: one transition at a time
- $E = \{(m, t, m') \mid \bullet t \leq m, m' = m - \bullet t + t^\bullet\}$
- initial marking \implies initial state; take reachable part



Semantics of Petri Nets

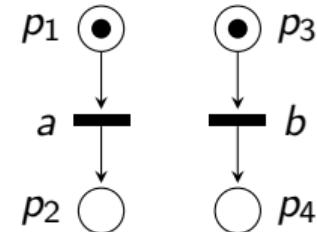
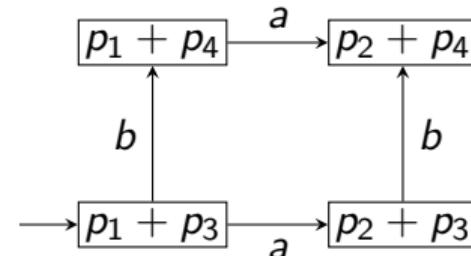
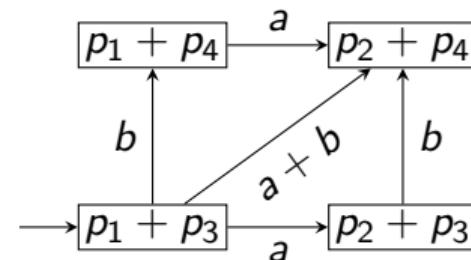
Petri net (S, T, F) : places S ; transitions T ;
weighted flows $F : S \times T \cup T \times S \rightarrow \mathbb{N}$

Interleaved semantics (reachability graph) (V, E) :

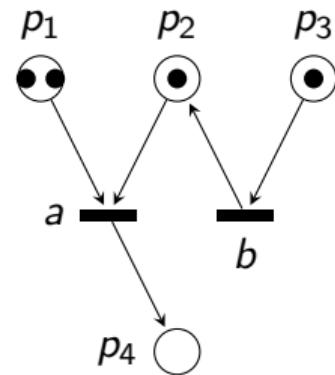
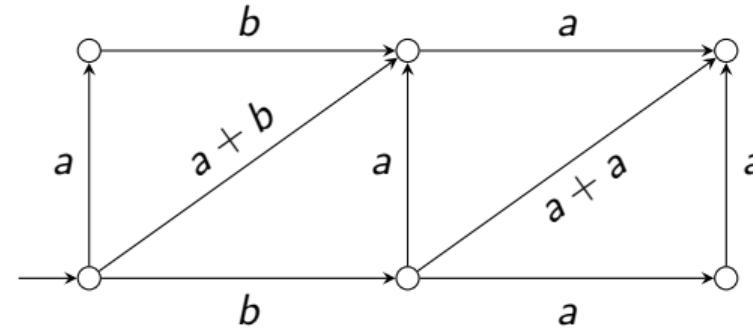
- $V = \mathbb{N}^S$: all markings
- $E \subseteq V \times T \times V$: one transition at a time
- $E = \{(m, t, m') \mid \bullet t \leq m, m' = m - \bullet t + t^\bullet\}$
- initial marking \implies initial state; take reachable part

Concurrent step reachability graph (V, E') :

- $V = \mathbb{N}^S$
- $E' \subseteq V \times \mathbb{N}^T \times V$: multisets of transitions
- $E' = \{(m, U, m') \mid \bullet U \leq m, m' = m - \bullet U + U^\bullet\}$

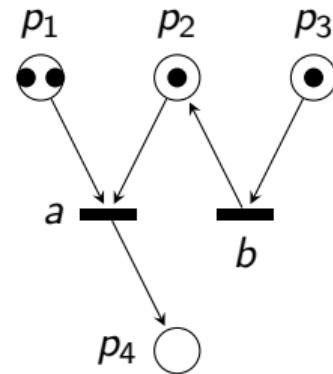
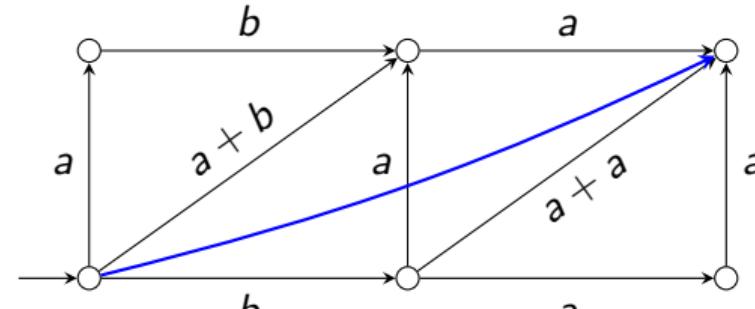


Another Example



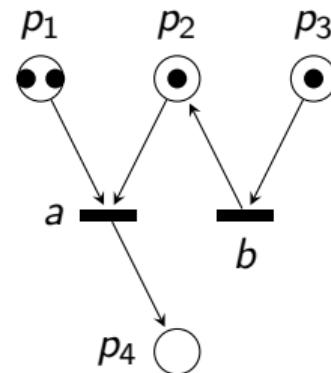
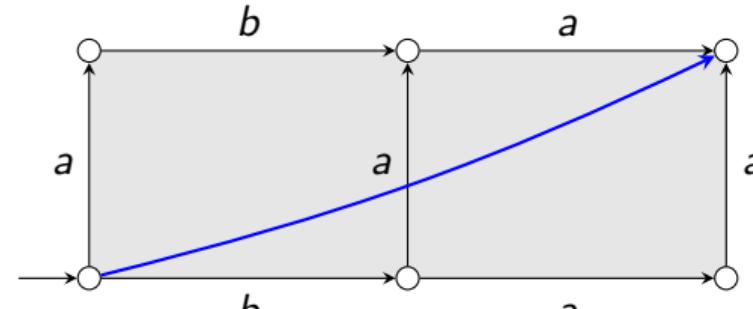
- after firing b , a is **auto-concurrent**

Another Example



- after firing b , a is **auto-concurrent**
- semantics misses some behavoir?
 - start a – start b – finish b – start another a – etc.

Another Example



- after firing b , a is **auto-concurrent**
- semantics misses some behavoir?
 - start a – start b – finish b – start another a – etc.
- enter **higher-dimensional automata**
 - replace multi-transitions by **squares**

1 Introduction

2 Petri Nets

3 Higher-Dimensional Automata

4 Concurrent Semantics of Petri Nets

Higher-Dimensional Automata

A **conclist** is a finite, totally ordered, Σ -labeled set.

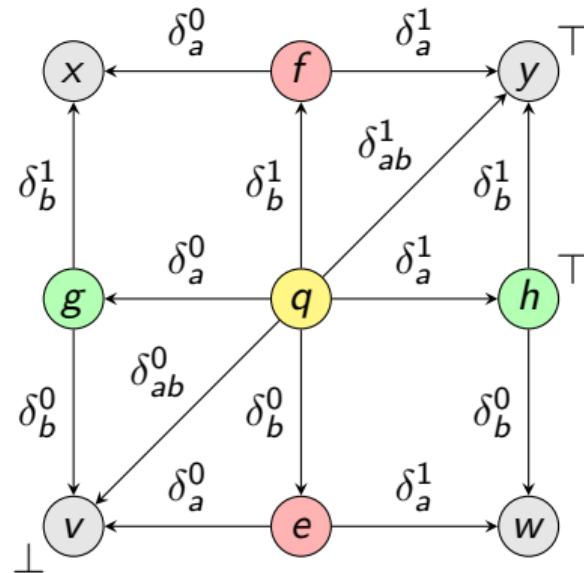
(a list of labeled events)

A **precubical set** X consists of:

- A set of cells X (cubes)
- Every cell $x \in X$ has a conclist $\text{ev}(x)$ (list of events active in x)
- We write $X[U] = \{x \in X \mid \text{ev}(x) = U\}$ for a conclist U (cells of type U)
- For every conclist U and $A \subseteq U$ there are:
 - upper face map $\delta_A^1 : X[U] \rightarrow X[U \setminus A]$ (terminating events A)
 - lower face map $\delta_A^0 : X[U] \rightarrow X[U \setminus A]$ ("unstarting" events A)
- Precube identities: $\delta_A^\mu \delta_B^\nu = \delta_B^\nu \delta_A^\mu$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A **higher dimensional automaton (HDA)** is a precubical set X with **initial cells** $\perp \subseteq X$ and **accepting cells** $\top \subseteq X$ (not necessarily vertices)

Example



$$X[\emptyset] = \{v, w, x, y\}$$

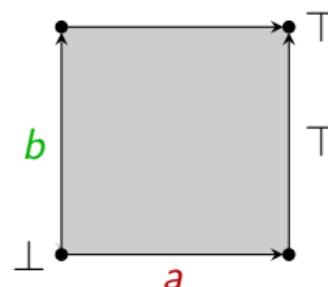
$$X[a] = \{e, f\}$$

$$X[b] = \{g, h\}$$

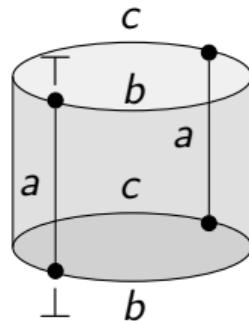
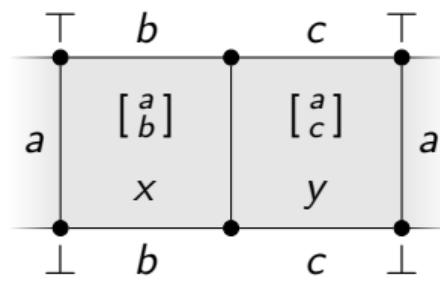
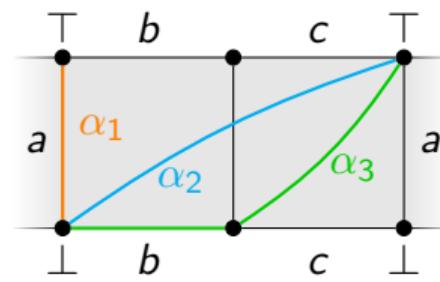
$$X[[\begin{smallmatrix} a \\ b \end{smallmatrix}]] = \{q\}$$

$$\perp_X = \{v\}$$

$$\top_X = \{h, y\}$$

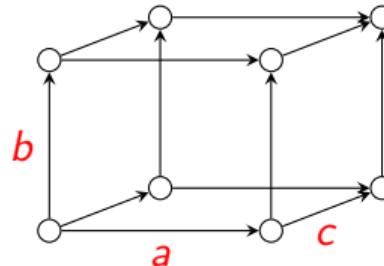


Another One

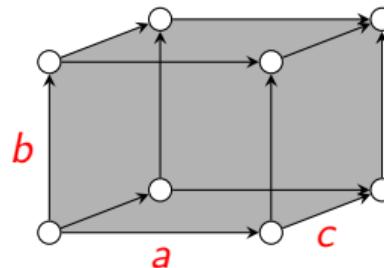


$$a \parallel (bc)^*$$

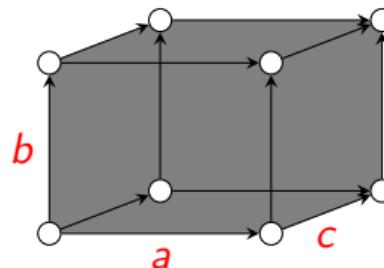
More Examples



no concurrency



two out of three



full concurrency

Higher-Dimensional Automata & Concurrency Theory

HDAs as a model for **concurrency**:

- points: **states**
- edges: **transitions**
- squares, cubes etc.: **independency** relations / **concurrently** executing events
- **two-dimensional automata** \cong asynchronous transition systems
- Introduced in 1990
- Generalize all main models of concurrency proposed in the literature
- (event structures; Petri nets; communicating automata; etc.)

1 Introduction

2 Petri Nets

3 Higher-Dimensional Automata

4 Concurrent Semantics of Petri Nets

Concurrent Semantics of Petri Nets

Petri net (S, T, F) : places S ; transitions T ;
weighted flows $F : S \times T \cup T \times S \rightarrow \mathbb{N}$

Interleaved semantics (V, E) : $V = \mathbb{N}^S$; $E \subseteq V \times T \times V$

- $E = \{(m, t, m') \mid \bullet t \leq m, m' = m - \bullet t + t^\bullet\}$

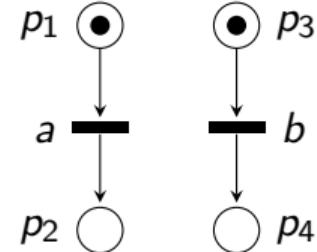
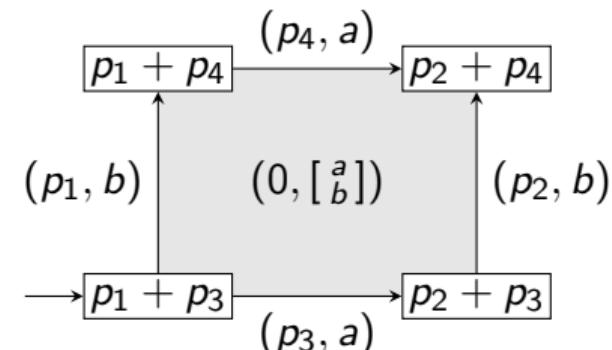
Concurrent semantics as HDA:

$\square = \square(T)$, $X = \mathbb{N}^S \times \square$, $\text{ev}(m, \tau) = \tau$

- for $x = (m, \tau) \in X[\tau]$ with $\tau = (t_1, \dots, t_n)$:

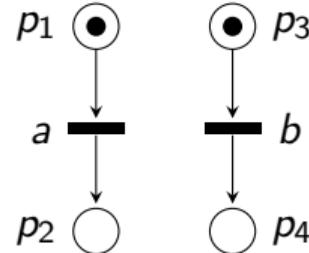
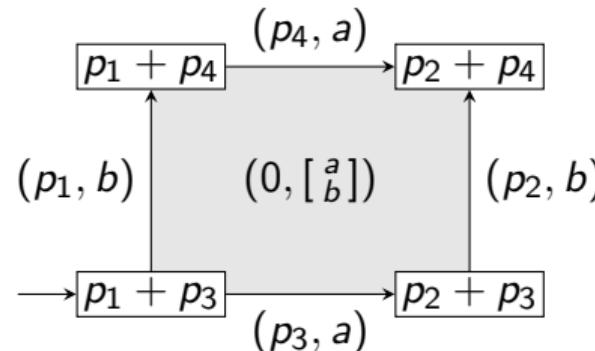
$$\delta_{t_i}^0(x) = (m + \bullet t_i, (t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n))$$

$$\delta_{t_i}^1(x) = (m + t_i^\bullet, (t_1, \dots, t_{i-1}, t_{i+1}, \dots, t_n))$$
- initial marking \implies initial cell; take reachable part
- (no accepting cells)

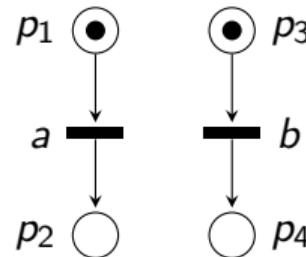


Event Order

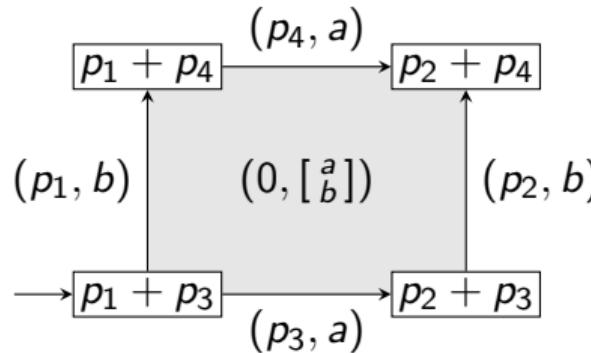
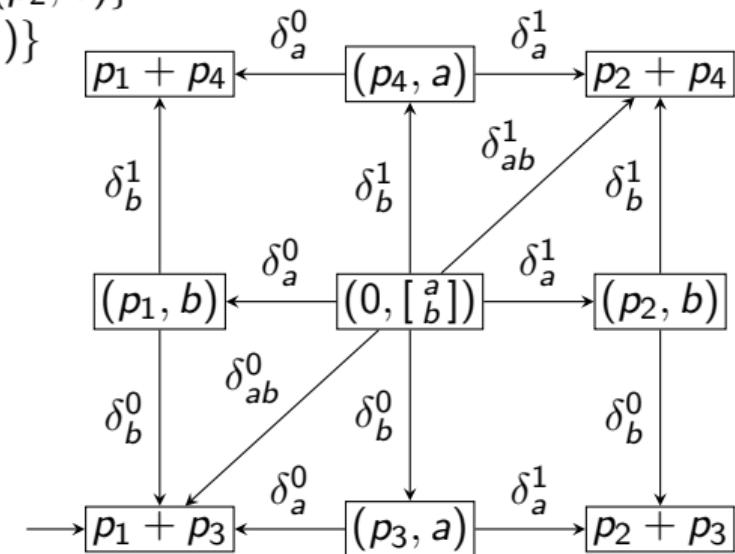
- trouble with symmetry:
have a cell $(0, [\frac{a}{b}])$, but also $(0, [\frac{b}{a}])$ (not shown)
- solution: fix an arbitrary **order \preccurlyeq on T**
- and use $\square = \left\{ \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix} \mid \forall i = 1, \dots, n-1 : t_i \preccurlyeq t_{i+1} \right\}$
instead of $\square(T)$
- order \preccurlyeq may be chosen (and re-chosen) at will
- here: lexicographic $a \prec b \prec \dots$



Example, Complete



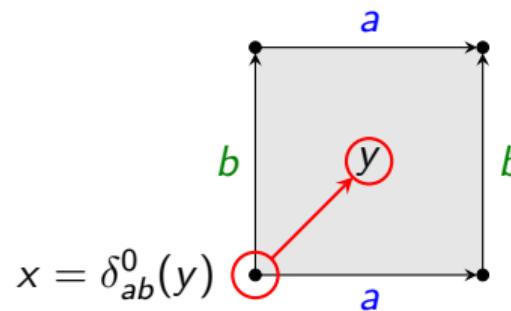
$$\begin{aligned} X[\emptyset] &= \{p_1 + p_3, p_2 + p_3, p_1 + p_4, p_2 + p_4\} \\ X[a] &= \{(p_3, a), (p_4, a)\} \\ X[b] &= \{(p_1, b), (p_2, b)\} \\ X[[\overset{a}{b}]] &= \{(0, [\overset{a}{b}])\} \end{aligned}$$



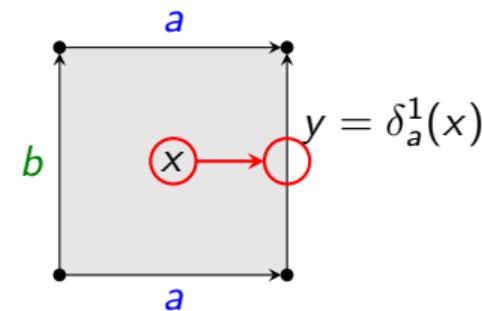
Computations of HDAs

An HDA computes by **starting** and **terminating** events in sequence:

upstep $x \uparrow y$, starting $[^a_b]$:



downstep $x \downarrow y$, terminating a :



Idea: Use this to define an automata-like operational semantics **for HDAs**

- an **ST-automaton** (def. next slide) has
 - transitions which start and terminate events
 - states which remember which events are currently running

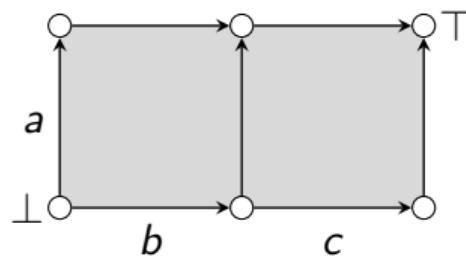
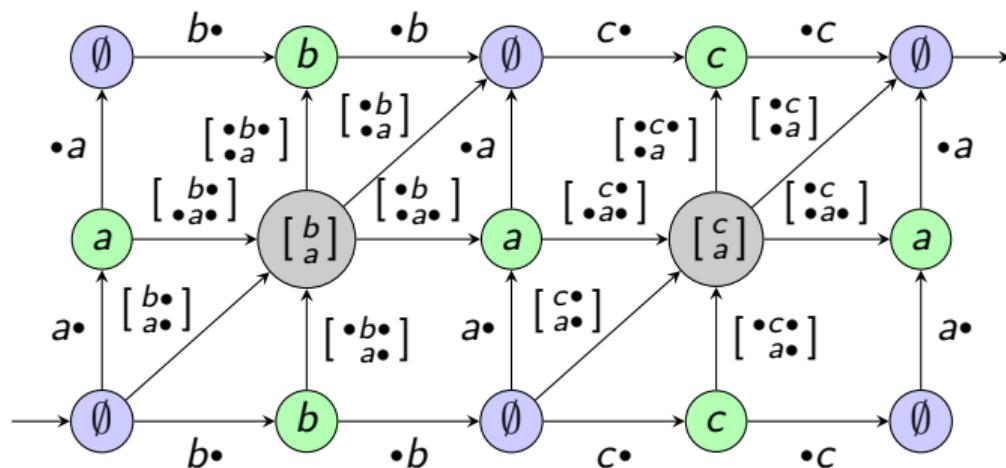
ST-Automata

- a **starter** (A, U) : conclist U , subset $A \subseteq U$
- a **terminator** (U, B) : conclist U , subset $B \subseteq U$
- starting A ; terminating B : written $A \uparrow U$ resp. $U \downarrow B$
- Let ST denote the (infinite) set of starters and terminators

An **ST-automaton** $(Q, \perp, \top, E, \lambda)$:

- Q set of **states**; $\perp, \top \subseteq Q$ initial resp. accepting states
- $E \subseteq Q \times ST \times Q$ **transitions**
- $\lambda : Q \rightarrow \square$ **state labeling**, such that for all $(p, x, q) \in E$:
 - if $x = A \uparrow U$, then $\lambda(p) = U \setminus A$ and $\lambda(q) = U$;
 - if $x = U \downarrow B$, then $\lambda(p) = U$ and $\lambda(q) = U \setminus B$.

Translation

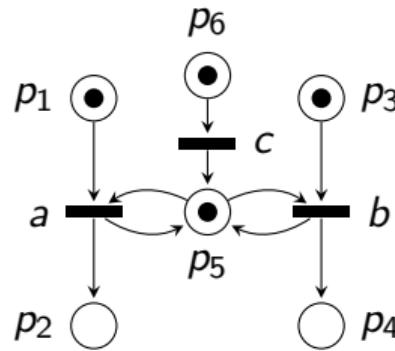
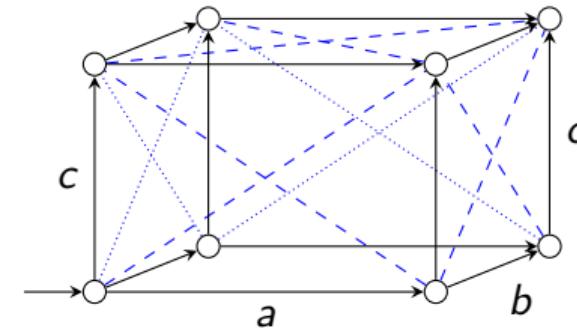


from HDA (X, \perp, \top) to ST-automaton $(Q, \perp, \top, E, \lambda)$:

- $Q = X$, $\lambda = \text{ev}$, $E = \{ \delta_A^0(x) \xrightarrow{A \uparrow \text{ev}(x)} x \mid A \subseteq \text{ev}(x) \} \cup \{ x \xrightarrow{\text{ev}(x) \downarrow A} \delta_A^1(x) \mid A \subseteq \text{ev}(x) \}$

from ST-automata to HDAs: complicated; we've **lost geometric information**

One Last Example



- initially, p_5 is a **mutex place**: it disables concurrency of a and b
- after c fires, p_5 holds two tokens, so a and b **become concurrent**
- semantically, a hollow cube without bottom face
- the **five faces**: front: $(p_3, [^a_c])$, back: $(p_4, [^a_c])$
left: $(p_1, [^b_c])$, right: $(p_2, [^b_c])$
top: $(0, [^a_b])$

Selected Bibliography

- J.Desel, W.Reisig. *Place/transition Petri nets*. Lectures on Petri nets, Springer 1998
- J.Esparza. *Lecture notes on Petri nets*. 2019
- R.J.van Glabbeek. *On the expressiveness of higher dimensional automata*. Theor.Comput.Sci. 2006
- A.Amrane, H.Bazille, U.F., L.Hélouët, P.Schlehuber-Caissier. *Petri nets and higher-dimensional automata*. PETRI NETS 2025
- A.Amrane, H.Bazille, E.Clement, U.F., K.Ziemiański. *Presenting interval pomsets with interfaces*. RAMiCS 2024