

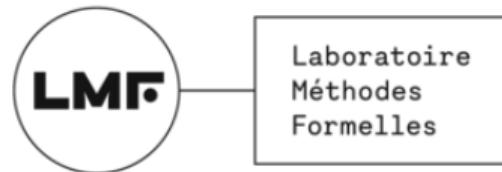
Discrete and Continuous Models for Concurrent Systems

3. Languages of Higher-Dimensional Automata

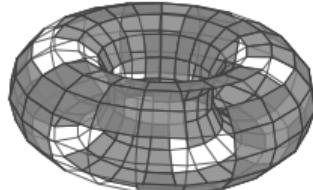
Uli Fahrenberg

LMF, Université Paris-Saclay, France

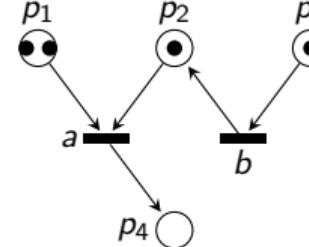
POPL 2026 Tutorial, Rennes, France



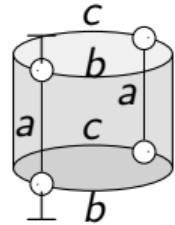
1. The geometry of concurrency



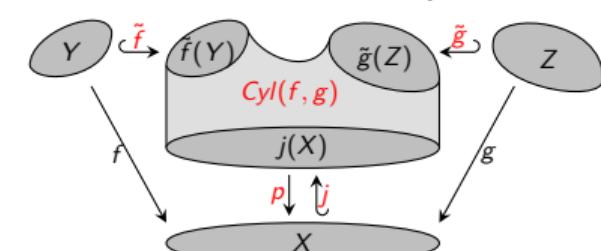
2. Concurrent semantics of Petri nets



3. Languages of higher-dimensional aut.



4. Advanced topics



1 Introduction

2 Higher-Dimensional Automata

③ Languages of Higher-Dimensional Automata

4 Properties

Higher-Dimensional Automata

A **conclist** is a finite, totally ordered, Σ -labeled set.

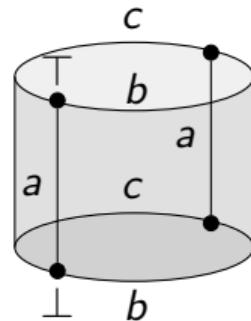
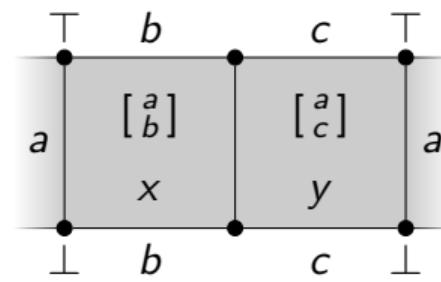
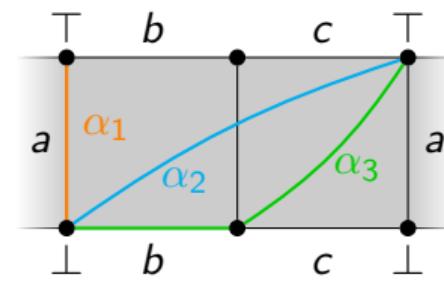
(a list of labeled events)

A **precubical set** X consists of:

- A set of cells X (cubes)
- Every cell $x \in X$ has a conclist $\text{ev}(x)$ (list of events active in x)
- We write $X[U] = \{x \in X \mid \text{ev}(x) = U\}$ for a conclist U (cells of type U)
- For every conclist U and $A \subseteq U$ there are:
 - upper face map $\delta_A^1 : X[U] \rightarrow X[U \setminus A]$ (terminating events A)
 - lower face map $\delta_A^0 : X[U] \rightarrow X[U \setminus A]$ ("unstarting" events A)
- Precube identities: $\delta_A^\mu \delta_B^\nu = \delta_B^\nu \delta_A^\mu$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$

A **higher dimensional automaton (HDA)** is a precubical set X with **initial cells** $\perp \subseteq X$ and **accepting cells** $\top \subseteq X$ (not necessarily vertices)

Example

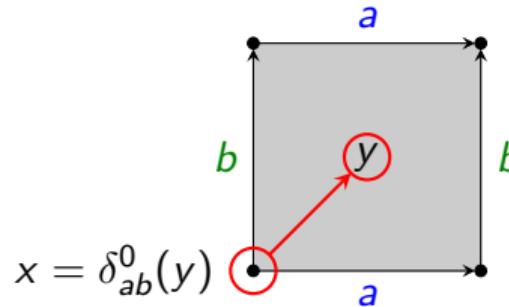


$$a \parallel (bc)^*$$

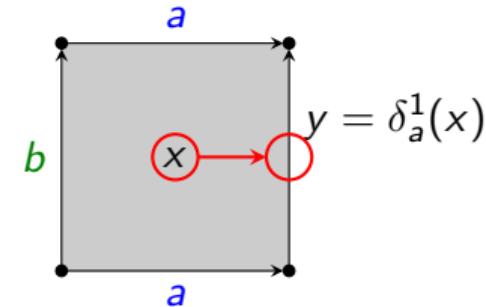
Computations of HDAs

An HDA computes by **starting** and **terminating** events in sequence:

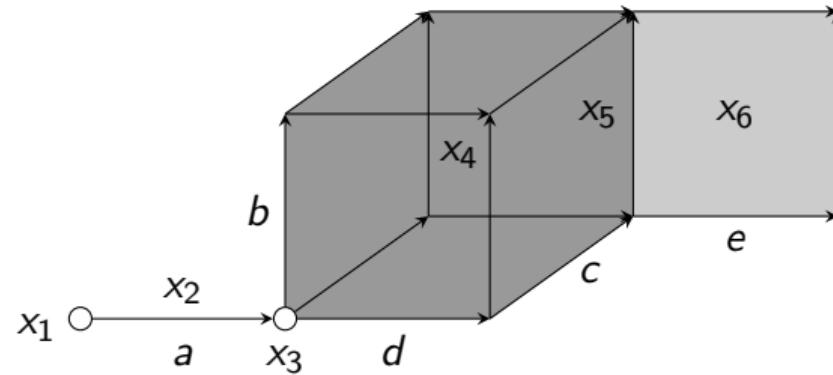
upstep $x \uparrow y$, starting $[\begin{smallmatrix} a \\ b \end{smallmatrix}]$:



downstep $x \downarrow y$, terminating a :



Example



$$(x_1 \nearrow^a x_2 \searrow_a x_3 \nearrow^{\{b,c,d\}} x_4 \searrow_{\{c,d\}} x_5 \nearrow^e x_6)$$

Precubical Sets As Presheaves

A **presheaf** over a category \mathcal{C} is a functor $\mathcal{C}^{\text{op}} \rightarrow \text{Set}$ (contravariant functor on \mathcal{C})

The **precube category** \square has conclists as objects.

Morphisms are **coface maps** $d_{A,B} : U \rightarrow V$, where

- $A, B \subseteq V$ are disjoint subsets,
- $U \simeq V \setminus (A \cup B)$ are isomorphic conclists,
- $d_{A,B} : U \rightarrow V$ is the **unique** label-preserving monotonic map with image $V \setminus (A \cup B)$.

Composition of coface maps $d_{A,B} : U \rightarrow V$ and $d_{C,D} : V \rightarrow W$ is

$$d_{\partial(A) \cup C, \partial(B) \cup D} : U \rightarrow W,$$

where $\partial : V \rightarrow W \setminus (C \cup D)$ is the **unique** conlist isomorphism.

- precubical sets: **presheaves over \square**
- HDAs: precubical sets with initial and accepting cells

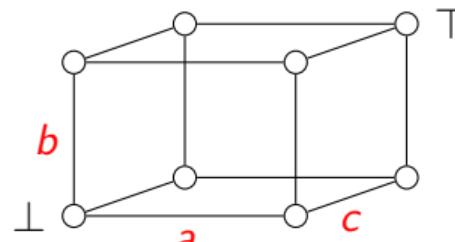
1 Introduction

2 Higher-Dimensional Automata

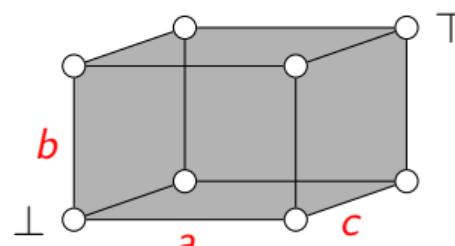
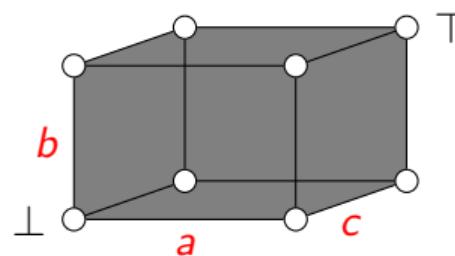
3 Languages of Higher-Dimensional Automata

4 Properties

Languages of HDAs: Examples

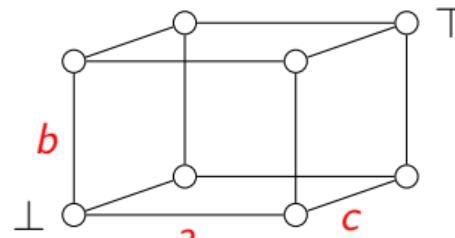
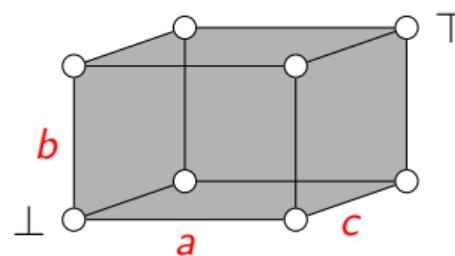
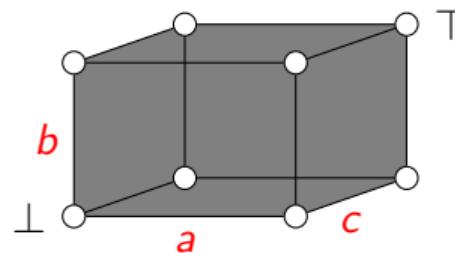


$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$



$$L_3 = \left\{ \left[\begin{matrix} a \\ b \\ c \end{matrix} \right], \dots \right\}$$

Languages of HDAs: Examples



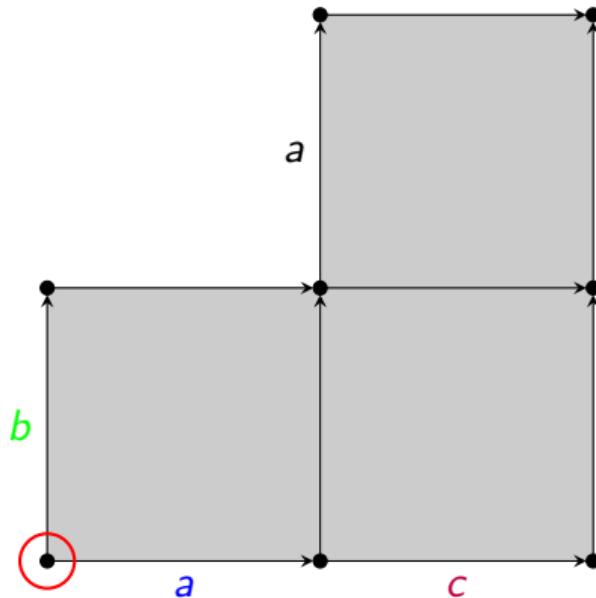
$$L_1 = \{abc, acb, bac, bca, cab, cba\}$$

$$L_2 = \left\{ \left[\begin{smallmatrix} a \\ b \rightarrow c \end{smallmatrix} \right], \left[\begin{smallmatrix} a \\ c \rightarrow b \end{smallmatrix} \right], \left[\begin{smallmatrix} b \\ a \rightarrow c \end{smallmatrix} \right], \left[\begin{smallmatrix} b \\ c \rightarrow a \end{smallmatrix} \right], \left[\begin{smallmatrix} c \\ a \rightarrow b \end{smallmatrix} \right], \left[\begin{smallmatrix} c \\ b \rightarrow a \end{smallmatrix} \right] \right\} \cup L_1 \cup \dots$$

$$L_3 = \left\{ \left[\begin{smallmatrix} a \\ b \\ c \end{smallmatrix} \right] \right\} \cup L_2$$

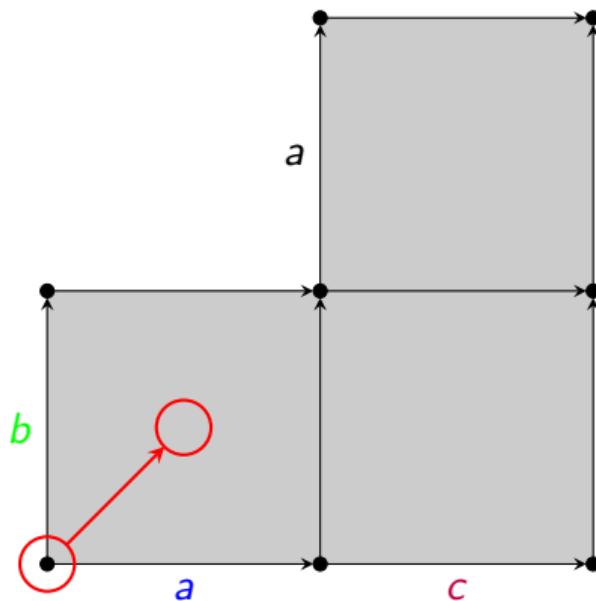
sets of pomsets

Event Ipomset of a Path



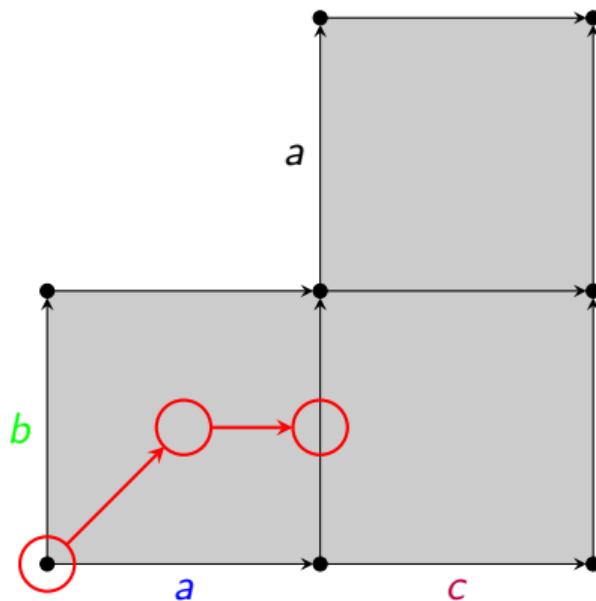
Lifetimes of events

Event Ipomset of a Path

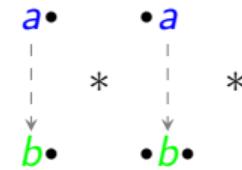


Lifetimes of events

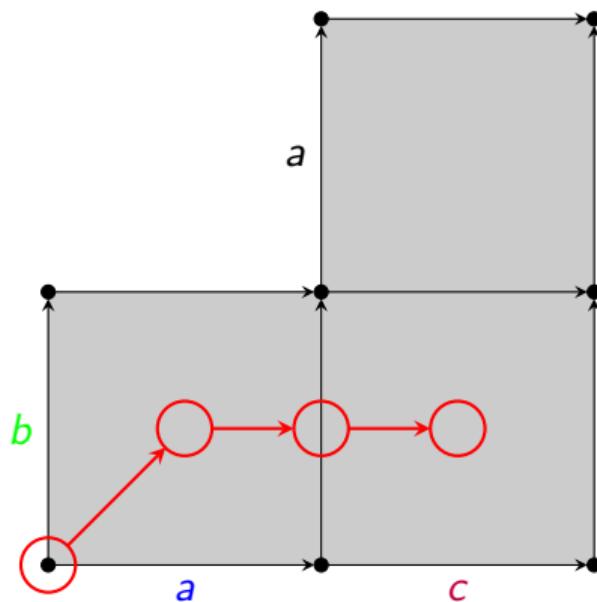
Event Ipomset of a Path



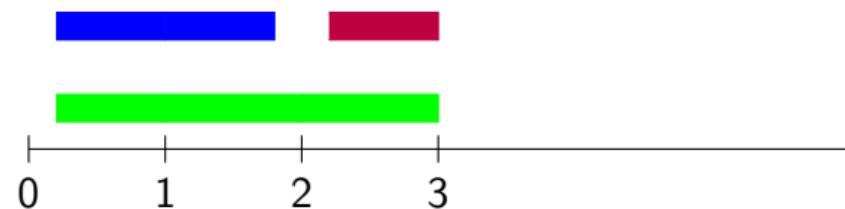
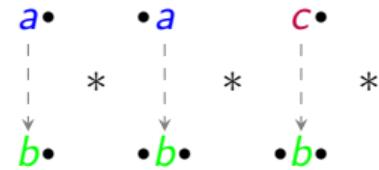
Lifetimes of events



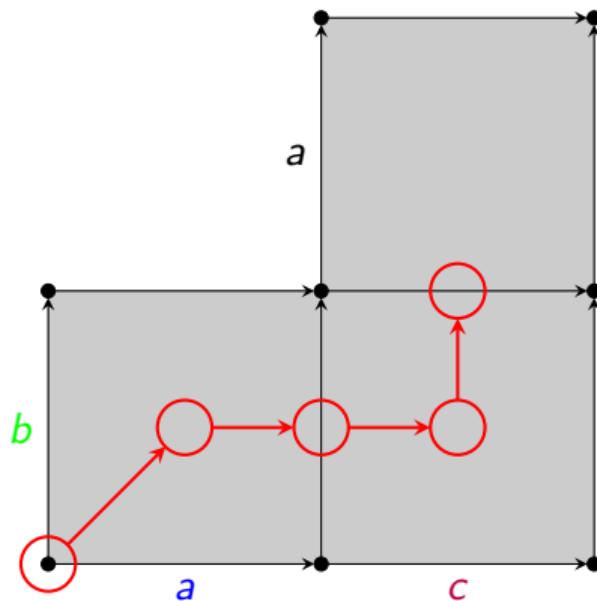
Event Ipomset of a Path



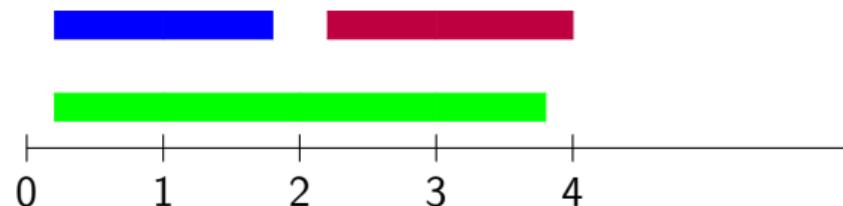
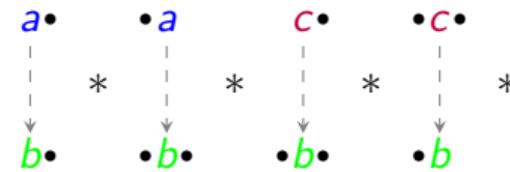
Lifetimes of events



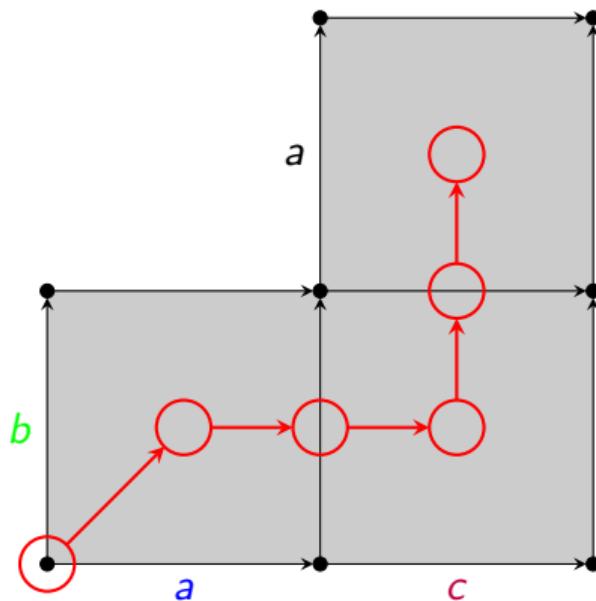
Event Ipomset of a Path



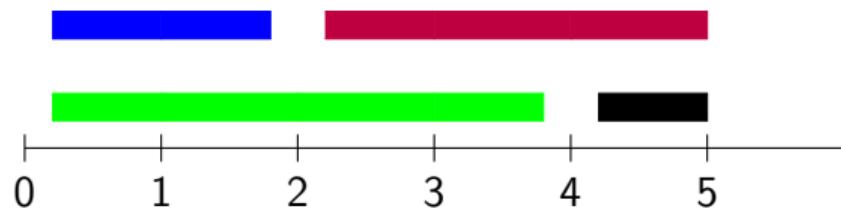
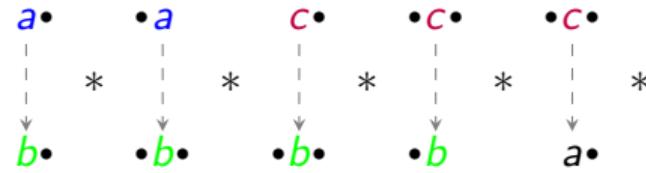
Lifetimes of events



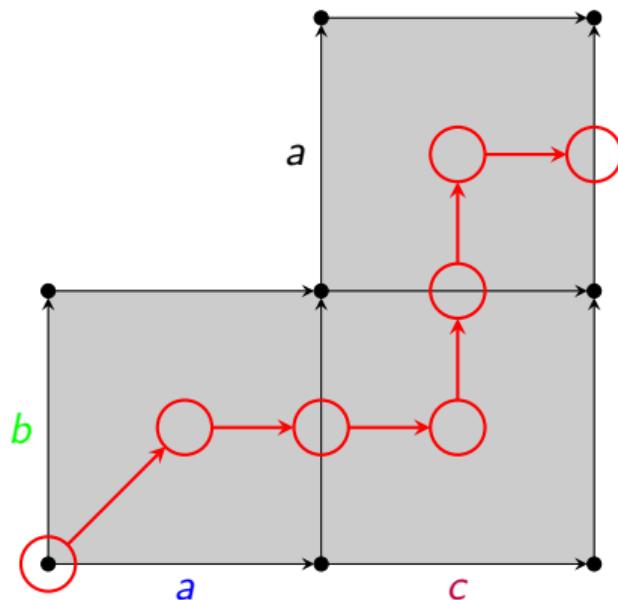
Event Ipomset of a Path



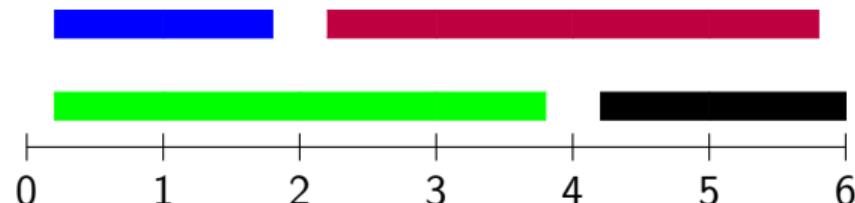
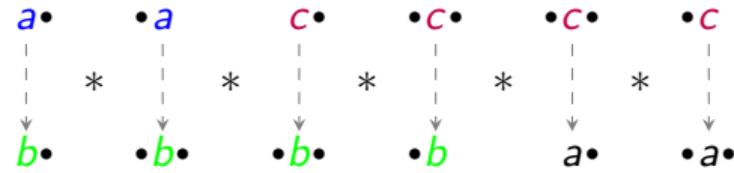
Lifetimes of events



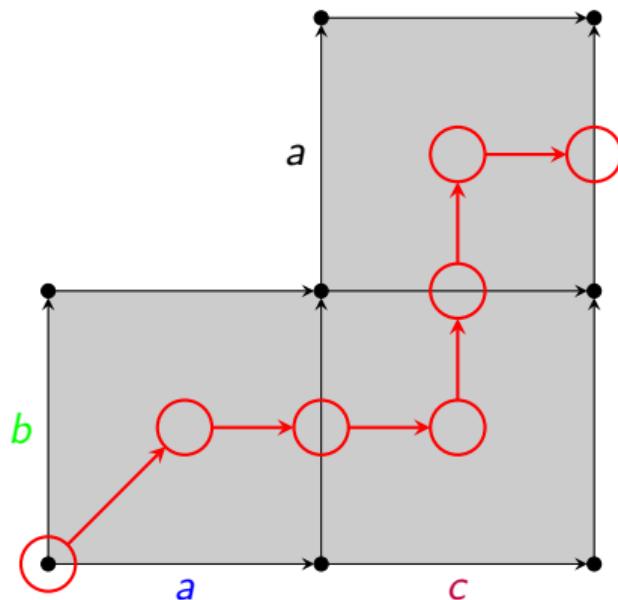
Event Ipomset of a Path



Lifetimes of events

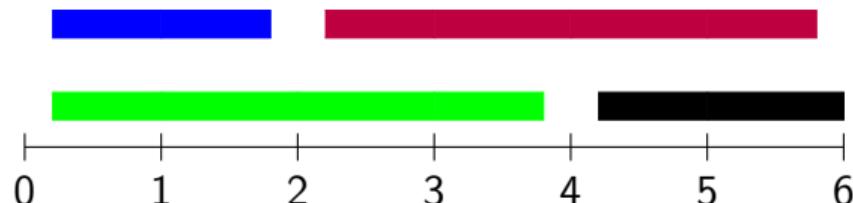


Event Ipomset of a Path

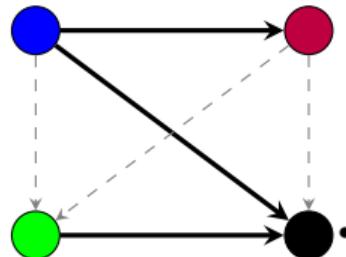


(not series-parallel!)

Lifetimes of events



Event ipomset

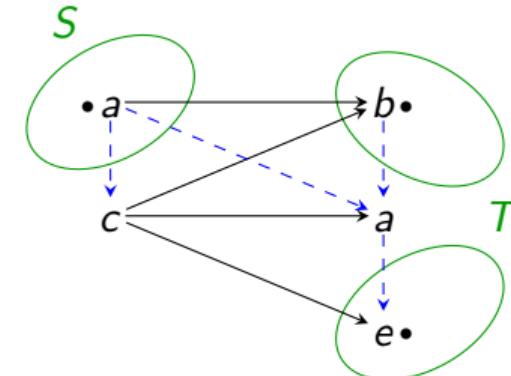


Pomsets with Interfaces

Definition

A **pomset with interfaces** (ipomset): $(P, <, \dashrightarrow, S, T, \lambda)$:

- finite set P ;
- two partial orders $<$ (precedence order), \dashrightarrow (event order)
 - s.t. $< \cup \dashrightarrow$ is a *total relation*;
- $S, T \subseteq P$ source and target interfaces
 - s.t. S is $<$ -minimal and T is $<$ -maximal.

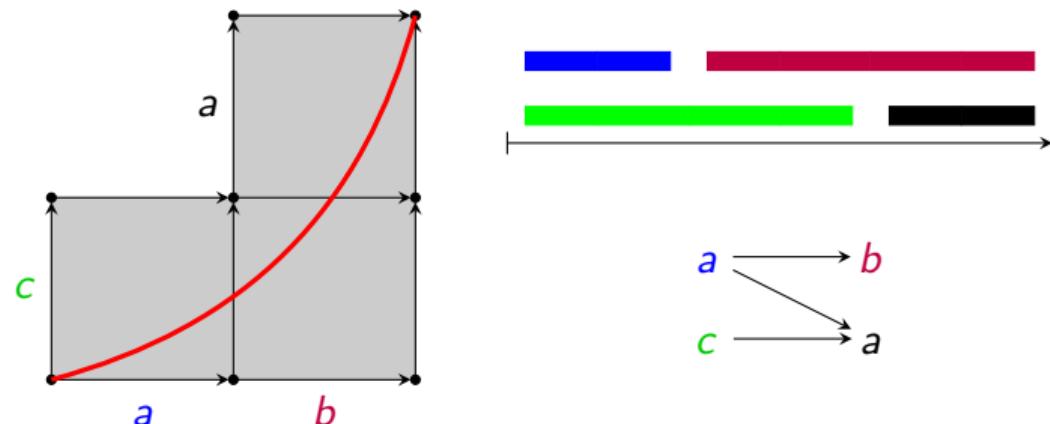


Interval Orders

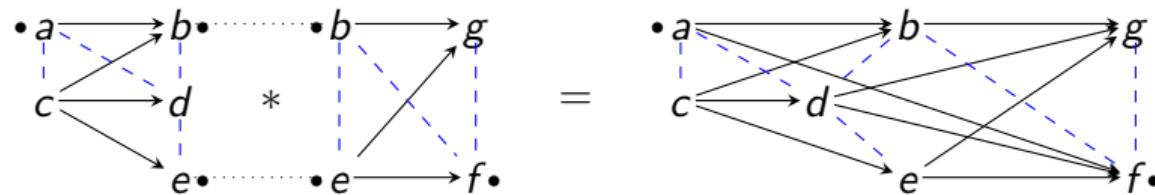
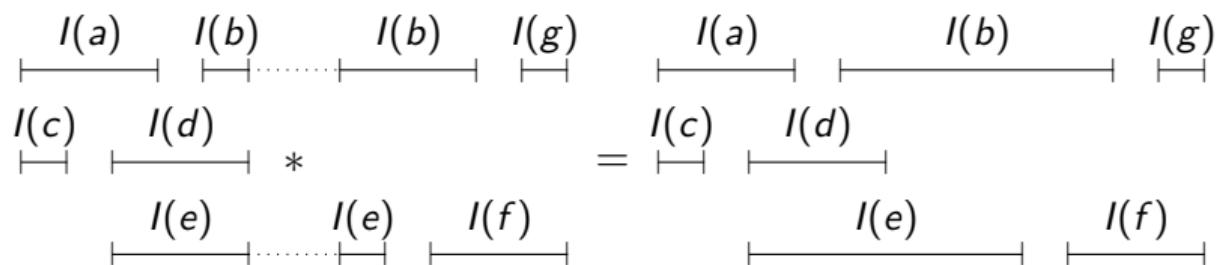
Definition

An ipomset $(P, <_P, \dashrightarrow, S, T, \lambda)$ is **interval** if $(P, <_P)$ has an **interval representation**:
functions $b, e : P \rightarrow \mathbb{R}$ s.t.

- $\forall x \in P : b(x) \leq_{\mathbb{R}} e(x)$;
- $\forall x, y \in P : e(x) <_{\mathbb{R}} b(y) \iff x <_P y$

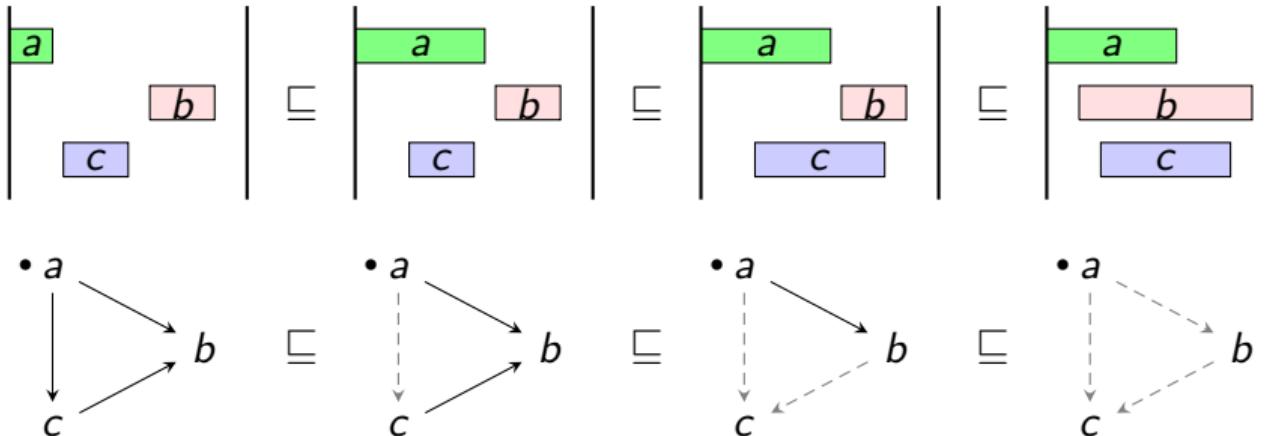


Gluing Composition



- **Gluing $P * Q$:** P before Q , except for interfaces (which are identified)
- (also have **parallel composition** $P \parallel Q$: disjoint union)

Subsumption



P refines Q / Q subsumes P / $P \sqsubseteq Q$ iff

- P and Q have same interfaces
- P has more $<$ than Q
- Q has more $-->$ than P

Languages of HDAs

Definition

The **language** of an HDA X is the set of event ipomsets of all accepting paths:

$$L(X) = \{ \text{ev}(\pi) \mid \pi \in \text{Paths}(X), \text{src}(\pi) \in \perp_X, \text{tgt}(\pi) \in \top_X \}$$

- $L(X)$ contains only **interval** ipomsets,
- is **closed under subsumption**,
- and has **finite width**

Definition

A language $L \subseteq \text{iiPoms}$ is **regular** if there is an HDA X with $L = L(X)$.

1 Introduction

2 Higher-Dimensional Automata

3 Languages of Higher-Dimensional Automata

4 Properties

Theorems

Definition (Rational Languages over Σ)

- Generated by \emptyset , $\{\epsilon\}$, and all $\{[a]\}$, $\{[\bullet a]\}$, $\{[a \bullet]\}$, $\{[\bullet a \bullet]\}$ for $a \in \Sigma$
- under operations \cup , $*$, \parallel and (Kleene plus) $^+$
- (these need to take **subsumption closure** into account)

Definition (Monadic Second-Order Logics over Ipomsets)

$$\begin{aligned}\psi ::= & a(x) \mid s(x) \mid t(x) \mid x < y \mid x \dashrightarrow y \mid x \in X \mid \\ & \exists x. \psi \mid \forall x. \psi \mid \exists X. \psi \mid \forall X. \psi \mid \psi_1 \wedge \psi_2 \mid \psi_1 \vee \psi_2 \mid \neg \psi\end{aligned}$$

Theorem (à la Kleene): regular \iff rational

Theorem (à la Myhill-Nerode): regular \iff finite prefix quotient

Theorem (à la Büchi-Elgot-Trakhtenbrot):

regular \iff MSO-definable, of finite width, and subsumption-closed

Kleene Theorem: Easy Parts

- regular \implies rational: by reduction to **ST-automata**

- rational \implies regular: generators:

$L(X)$	\emptyset	$\{\epsilon\}$	$\{[a]\}$	$\{[\bullet a]\}$	$\{[a \bullet]\}$	$\{[\bullet a \bullet]\}$
X	\emptyset	$\perp \circ T$	$\begin{array}{c} T \\ a \end{array}$	$\begin{array}{c} T \\ a \end{array}$	$\begin{array}{c} a \\ T \end{array}$	$\begin{array}{c} \perp \\ a \\ T \end{array}$

- rational \implies regular: \cup and \parallel

$$L(X) \cup L(Y) = L(X \sqcup Y)$$

$$L(X) \parallel L(Y) = L(X \otimes Y)$$

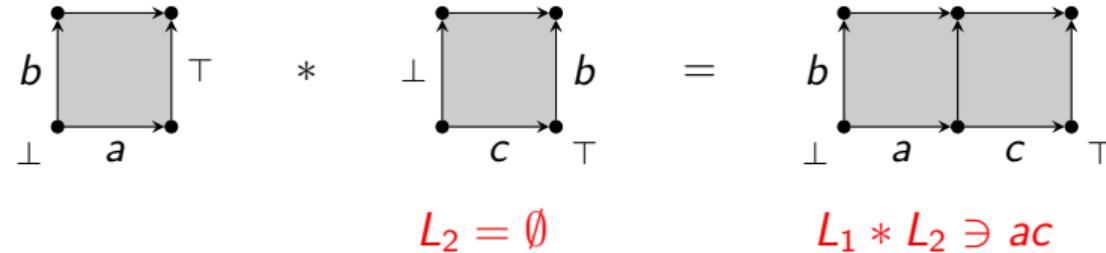
Kleene Theorem: Difficult Parts

- miss to see: gluings and iterations of regular languages are regular:

$$L(X) * L(Y) = L(X * Y) \quad L(X)^+ = L(X^+)$$

- much more difficult: higher-dimensional gluings identify too much

- for example:



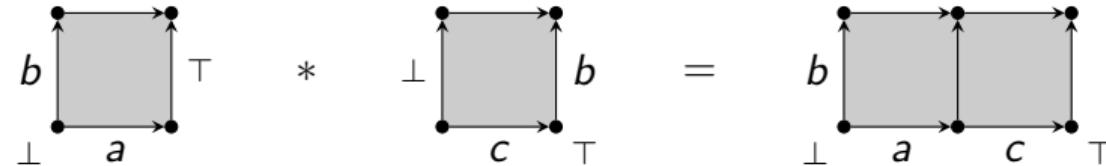
Kleene Theorem: Difficult Parts

- miss to see: gluings and iterations of regular languages are regular:

$$L(X) * L(Y) = L(X * Y) \quad L(X)^+ = L(X^+)$$

- much more difficult: higher-dimensional gluings identify too much

- for example:



$$L_2 = \emptyset$$

$$L_1 * L_2 \ni ac$$

- use HDAs with interfaces and cylinder objects

HDAs with Interfaces

A conlist with interfaces (**iconlist**) is a conlist U with subsets $S \subseteq U \supseteq T$, denoted $_S U_T$
(events in T cannot be terminated; events in S cannot be “unstarted”)

A precubical set with interfaces (**ipc-set**) X consists of a set of cells X such that:

- Every cell $x \in X$ has an **iconlist** $\text{ev}(x)$
- We write $X[_S U_T] = \{x \in X \mid \text{ev}(x) = _S U_T\}$.
- For every $A \subseteq U - S$ there is a lower face map $\delta_A^0 : X[U] \rightarrow X[_S U_T - A]$.
- For every $B \subseteq U - T$ there is an upper face map $\delta_B^1 : X[U] \rightarrow X[_S U_T - b]$.
- Precubical identities: $\delta_A^\mu \delta_B^\nu = \delta_B^\nu \delta_A^\mu$ for $A \cap B = \emptyset$ and $\mu, \nu \in \{0, 1\}$
- (presheaves over a category **I**□)

An HDA with interfaces (**iHDA**) is a finite ipc-set with start and accept cells.

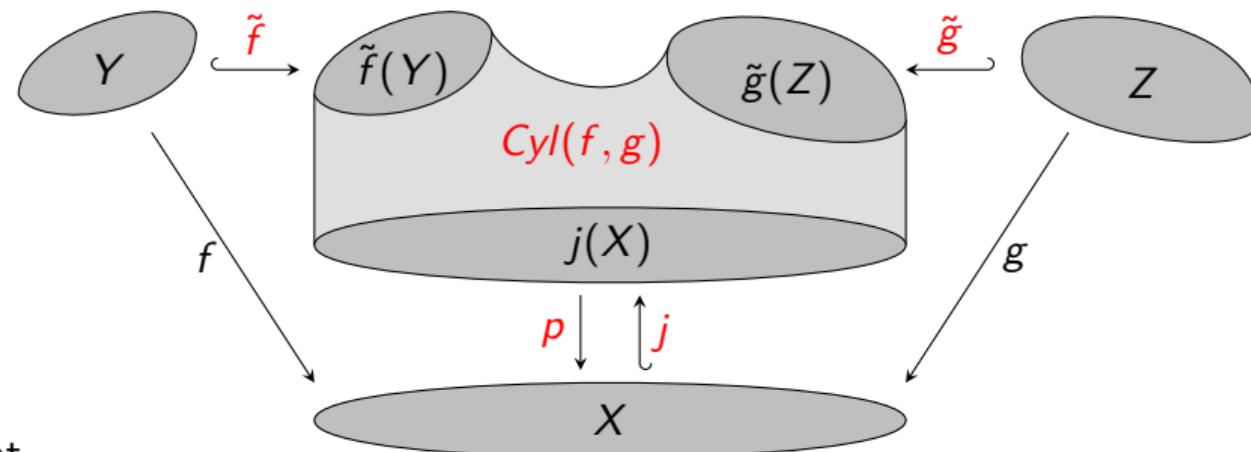
Extra conditions:

If $x \in X[_S U_T]$ is a start cell, then $S = U$.

If $x \in X[_S U_T]$ is an accept cell, then $T = U$.

Cylinders

Let X, Y, Z be ipc-sets and $f : Y \rightarrow X, g : Z \rightarrow X$ ipc-maps with $f(Y) \cap g(Z) = \emptyset$
There is a diagram of ipc-sets



such that

- \tilde{f} is an **initial inclusion**;
- \tilde{g} is a **final inclusion**;
- all paths in X from $f(Y)$ to $g(Z)$ **lift** to paths in $Cyl(f, g)$.

Cylinders: Construction

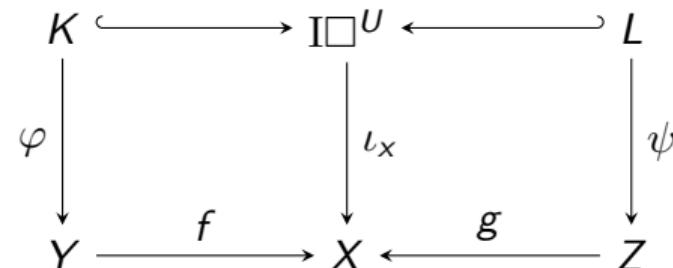
X, Y, Z : ipc-sets, $f : Y \rightarrow X$, $g : Z \rightarrow X$: ipc-maps with $f(Y) \cap g(Z) = \emptyset$.

For $s U_T \in \mathbb{I}^\square$ let

$$Cyl(f, g)[s U_T] = \{(x, K, L, \varphi, \psi)\}$$

such that

- $x \in X[s U_T]$;
- $K \subseteq \mathbb{I}^\square^U$ is an initial subset;
- $L \subseteq \mathbb{I}^\square^U$ is a final subset;
- $\varphi : K \rightarrow Y$, $\psi : L \rightarrow Z$ are ipc-maps satisfying $f \circ \varphi = \iota_X|_K$ and $g \circ \psi = \iota_X|_L$:



Gluing Composition of Regular Languages Is Regular

Proposition

Gluing composition of regular languages is regular.

Proof sketch: Let L and M be regular languages.

- ① We may assume that L, M are **simple**, i.e., $L = L(X)$, $M = L(Y)$ for iHDAs X, Y having **one initial** and **one accepting cell** each.
- ② Now replace X by $X' = \text{Cyl}(X \leftarrow \top_X : j)$ and Y by $Y' = \text{Cyl}(i : \perp_Y \rightarrow Y)$, then $L(X') = L(X)$ and $L(Y') = L(Y)$.
- ③ Go back to HDA and glue:

$$L(\mathbf{CI}(X') * \mathbf{CI}(Y')) = L(X') * L(Y') = L * M.$$

(**closure** \mathbf{CI} : iHDA \rightarrow HDA “adds missing cells”)

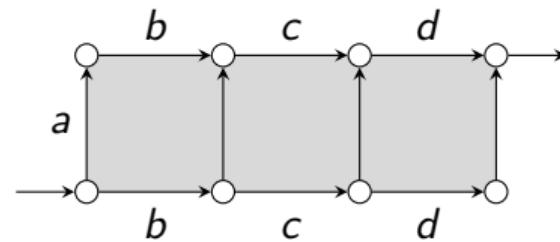
- ④ So $L * M$ is recognized by a finite HDA, hence regular.

Selected Bibliography

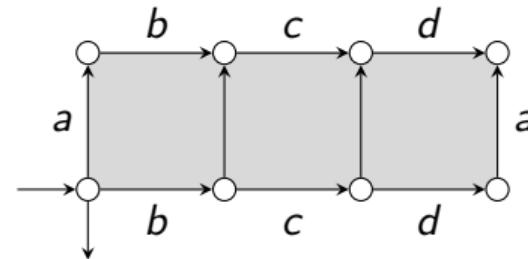
- U.F., C.Johansen, G.Struth, K.Ziemiański: *Kleene theorem for higher-dimensional automata*. Logical Meth.Comput.Sci. 2024
- U.F., K.Ziemiański: *Myhill-Nerode theorem for higher-dimensional automata*. Fund.Inf. 2024
- A.Amrane, H.Bazille, U.F., K.Ziemiański: *Closure and decision properties for higher-dimensional automata*. Theor.Comput.Sci. 2025
- A.Amrane, H.Bazille, U.F., M.Fortin: *Logic and languages of higher-dimensional automata*. DLT 2024

Exercises!

Exercise 1: What is the language of the HDA below?

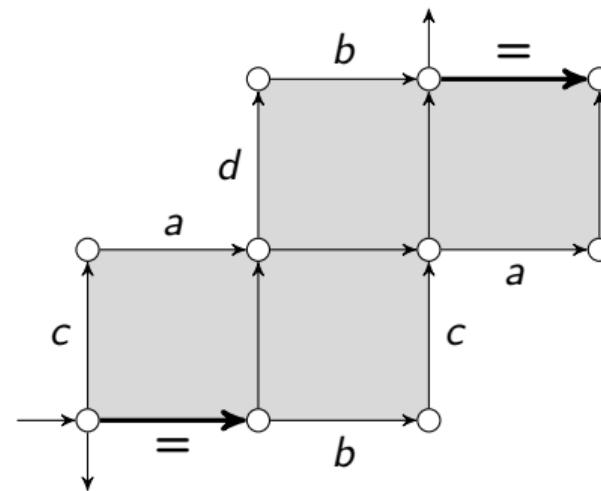


Exercise 2: Same question for the HDA below, where horizontal cells with the same label are identified, as are the left and right vertical cells.



Exercises!

Exercise 3: What is the language of the following HDA, with the cells marked “=” identified?



Exercises!

Exercise 4: Construct HDAs which correspond to the following rational expressions.

- ① $[\begin{smallmatrix} b \\ a \end{smallmatrix}] [\begin{smallmatrix} \bullet \\ c \end{smallmatrix}]$
- ② $([\begin{smallmatrix} b \\ a \end{smallmatrix}] [\begin{smallmatrix} \bullet \\ c \end{smallmatrix}])^+$
- ③ $([\begin{smallmatrix} \bullet \\ a \end{smallmatrix}] [\begin{smallmatrix} \bullet \\ c \end{smallmatrix}])^+$
- ④ $(a [\begin{smallmatrix} a \\ a \end{smallmatrix}] + [\begin{smallmatrix} a \\ a \end{smallmatrix}] a)^+$

Exercise 5: Let's look a bit closer at the HDA of the last part of the last exercise, for $(a [\begin{smallmatrix} a \\ a \end{smallmatrix}] + [\begin{smallmatrix} a \\ a \end{smallmatrix}] a)^+$. Call it X .

- ① Let $n \geq 1$. How many paths in X recognize the word $(aaa)^n$?
- ② Does there exist another HDA Y with $L(Y) = (a [\begin{smallmatrix} a \\ a \end{smallmatrix}] + [\begin{smallmatrix} a \\ a \end{smallmatrix}] a)^+$ and in which fewer paths recognize the words $(aaa)^n$?
- ③ Conclude that the language $(a [\begin{smallmatrix} a \\ a \end{smallmatrix}] + [\begin{smallmatrix} a \\ a \end{smallmatrix}] a)^+$ is inherently infinitely ambiguous.

Exercises!

Exercise 6: Using translations to ST-automata and the corresponding results for ordinary automata, show the following:

- ① Regular languages are rational.
- ② Regular languages have finite prefix quotient.
- ③ Inclusion of regular languages is decidable.