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Geometric Realisation

Definition
A precubical set is a graded set X = {X,},>0 together with face maps
69, 6% : Xy — Xp_1, for i =1,..., n, satisfying 0701 = 0j. 107 for i < j.
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Definition

The geometric realisation of a precubical set X is the d-space [X| = | |,~o X, X I" /.,
where ~ is the equivalence generated by N

(5;/X, (tl, e tn—l)) ~ (X, (tl, ot v i, .., t,,_l)).
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Geometric Realisation

Definition
The geometric realisation of a precubical set X is the d-space |X| = | ],~q X, x /.,
where ~ is the equivalence generated by
((5;’X, (tl, ey tn—l)) ~ (X7 (1.'17 oy tic, vy tivg, .., tn—l))-
® usual coend definition; left adjoint to singular precubical set functor

® actually, | X] is an Ipo-space 50 51
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Dipaths in Geometric Realisations

TH/TE
EEBE

Ay

Let p: [— |X| be a dipath in the geometric realisation of precubical set X.
e let C, = {x € X |im(p) N |x| # 0} — all cells touched by p
® organize C, into a sequence ¢, = (x1,...,Xm) s.t. Vi

X; = 5$x,-+1 or Xji11 = (Llrx,- (iterated face maps)
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Dipaths in Geometric Realisations

20
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Let p: [— |X| be a dipath in the geometric realisation of precubical set X.
® let C, = {x € X |im(p) N |x| # 0} — all cells touched by p
® organize C, into a sequence ¢, = (x1,...,Xm) s.t. Vi

[]
-

S
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O——0

X; = 5$x,-+1 or Xji11 = (Llrx,- (iterated face maps)
— the carrier sequence of p: a combinatorial path
Lemma
® any combinatorial path c gives rise to dipath p. (non-unique) with c,. = ¢

® if cp = cq, then p and q are dihomotopic
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Combinatorial Homotopy

® equivalence relation on combinatorial paths generated by local replacements

Lemma
® dipaths p, q are dihomotopic iff c, and c, are homotopic

® combinatorial paths ¢, d are homotopic iff p. and py are dihomotopic
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Summing Up

® precubical sets: combinatorial models of directed spaces

linked to directed spaces via geometric realisation

dipaths = combinatorial paths = executions

dihomotopy = combinatorial homotopy = equivalence of executions
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Combinatorial Homotopy vs Subsumption

® subsumption C: preorder generated by local replacements
= combinatorial homotopy =~ is the equivalence relation generated by subsumption
Lemma
* ol f = ev(a) Cev(p)
77 a~f = ev(a) 777 ev(p)
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Precubical Sets?

Definition (5 mins ago)
A precubical set is a graded set X = {X,}n>0 together with face maps
69, 6% : Xy — X1, for i =1,..., n, satisfying 0707 = 0j° 107 for i < j.

Definition (30 mins ago)
A precubical set is a set X together with a mapping ev : X — (conclists) and with face
maps 69,65 : X[U] = X[U \ A] satisfying 04,04 = %6 for AN B = 0.
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Presheaves Presheaves Presheaves

(augmented) precube category [ large (augmented) precube category [
objects {0,1}" for n > 0 objects totally ordered finite sets
morphisms injections of Os and 1s morphisms A, B-injections
skeletal isos are unique

Lemma

The inclusion U1 — [ is an equivalence of categories with a unique left inverse.

Corollary
The presheaf categories Set™" and Set™ are uniquely naturally isomorphic.

e precubical sets: Set™" or Set™": makes no difference
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Presheaves Presheaves Presheaves

(augmented) precube category [ large (augmented) precube category [
objects {0,1}" for n > 0 objects totally ordered finite sets
morphisms injections of Os and 1s morphisms A, B-injections
skeletal isos are unique

Lemma

The inclusion U1 — [ is an equivalence of categories with a unique left inverse.

Corollary
The presheaf categories Set™" and Set™ are uniquely naturally isomorphic.

e precubical sets: Set™" or Set™": makes no difference
¢ (but, no labels in [J; fundamental theorem takes care of this:
For C a presheaf cat and X € C, also the slice C/X is a presheaf cat.)
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Context
(augmented) precube category [ ‘ large (augmented) precube category [
objects {0,1}" for n > 0 objects totally ordered finite sets
morphisms injections of Os and 1s morphisms A, B-injections
skeletal isos are unique

[0 — [J equivalence with unique left inverse
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Context
(augmented) precube category [ large (augmented) precube category [
objects {0,1}" for n > 0 objects totally ordered finite sets
morphisms injections of Os and 1s morphisms A, B-injections
skeletal isos are unique
[0 — [J equivalence with unique left inverse
augmented presimplex category A large augmented presimplex category A
objects {1 < --- < n} forn>0 objects totally ordered finite sets
morphisms order injections morphisms order injections
skeletal isos are unique

A < A equivalence with unique left inverse
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large (augmented) precube category [

objects {0,1}" for n > 0
morphisms injections of Os and 1s
skeletal

objects totally ordered finite sets
morphisms A, B-injections
isos are unique

[0 — [J equivalence with unique left inverse

augmented presimplex category A

large augmented presimplex category A

objects {1 <--- < n}forn>0
morphisms order injections
skeletal

objects totally ordered finite sets
morphisms order injections
isos are unique

A < A equivalence with unique left inverse

category of ordinals

category of combinatorial species B

objects {1,...,n} for n >0
morphisms permutations

skeletal
Uli Fahrenberg

objects finite sets
morphisms bijections
isos are not unique
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The Zoo of Cubes (It's HoTT!)

precubical set: graded set X = {X,}n>0 plus face maps 69,6} : X;, — X_1

plus degeneracies ¢; : X, — X,+1: cubical set
with connections 7,9,7} : Xn = Xpg1

with transpositions o; : X, — X,

with diagonals A : X, — X,_1

many subsets of these are in use
all are presheaves

diagonals are important in cubical homotopy type theory

cubical w-categories with connections are equivalent to globular w-categories
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Monoids, Semirings, Kleene Algebra

® 3 monoid: set S, operation - on S, associative with unit 1 € §
® free monoid on X: X*; - is concatenation
® asemiring: set S, operations + (associative, commutative, unit 0) and -
(associative, unit 1), plus distributivity (x +y)z = xz+ yz and z(x +y) = zx + zy
® idempotent if x +x = x
® free idempotent semiring on X: finite subsets of L*
® (powerset lifting; general principle of adding idempotent + to algebraic
structure)
¢ a Kleene algebra: idempotent semiring plus (unary) * operation

® * “computes loops” / “computes least fixed points”
® (different axiomatisations possible)
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Concurrent Kleene Algebra

Definition
A concurrent monoid (S, -, ||,1, <):
® S set, - and || associative operations with shared unit 1
® . concatenation, || parallel composition
e < partial order on S such that - and || are monotone
® x<y = x-z<y-zand x||z < y||z etc.
¢ and such that (x||y) - (z||w) < (x-2) || (y - w)
® |ax interchange:

X

IN

y w
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Concurrent Kleene Algebra?

® concurrent monoid: (S, -, ||, 1, <)
® free concurrent monoid on ¥: series-parallel pomsets
® pomsets obtained from a € ¥ by series and parallel composition
® Theorem (Valdes-Tarjan-Lawler '82): pomset P is series-parallel iff P contains no
induced N
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Concurrent Kleene Algebra?

® concurrent monoid: (S, -, ||, 1, <)
free concurrent monoid on X: series-parallel pomsets
® pomsets obtained from a € ¥ by series and parallel composition

Theorem (Valdes-Tarjan-Lawler '82): pomset P is series-parallel iff P contains no
induced N

but look we have N's:

v N

a b
— standard CKA does not seem suited for HDA languages!
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Special ipomsets

Definition

An ipomset (P, <,--+,5,T,\) is
e discrete if < is empty (hence --» is total) [:E-}

® also written Pt
® a conclist (“concurrency list”) if it is discrete and S = T = () [l:a}
® 3 starter if it is discrete and T = P {:E:}
® 3 terminator if it is discrete and S = P [Ii.]
eJe

® an identity if it is both a starter and a terminator [:t:::}

Lemma (Janicki-Koutny 93; reformulated)
An ipomset is interval iff it has a decomposition into discrete ipomsets.
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Decompositions

Lemma (Janicki-Koutny 93)
A poset (P, <) is an interval order iff the order defined on its maximal antichains
defined by A= B <= Vac Abc B:b £ ais total.

Corollary
An ipomset is interval iff it has a decomposition into discrete ipomsets.

Lemma

ea ege ea
Any discrete ipomset is a gluing of a starter and a terminator. {-g-} = [-g-} * [-g-}
Corollary

Any interval ipomset has a decomposition as a sequence of starters and terminators.

(= Rl R S W v
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Unique decompositions

Notation: St: set of starters sUy
Te: set of terminators yUr
Id = St N Te: set of identities y Uy
Q=5StUTe
Definition
A word w = (81, U1, T1) ... (Sn, Upn, T,)) € Q7 is coherent if T; = S;41 for all i.
Definition
A coherent word is sparse if proper starters and proper terminators are alternating.

e additionally, all w € Id C Q" are sparse
® so that's Id U (St \ Id)((Te \ Id)(St\ Id))" U (Te \ Id)((St \ Id)(Te \ Id))"
Lemma

Any interval ipomset P has a unique decomposition P = Py x - - - x P,
such that Py ... P, € Q% is sparse.
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Step sequences

Let ~ be the congruence on QT generated by the relation

sUu.uTr ~sTt sSu.uUr ~ 557

® (compose subsequent starters and subsequent terminators)

Definition
A step sequence is a ~-equivalence class of coherent words in Q.

Lemma
Any step sequence has a unique sparse representant.

Theorem
The category of interval ipomsets is isomorphic to the category of step sequences.
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Categories?

Definition (Category iiPoms) Definition (Category Coh)
objects: conclists U (discrete objects: conclists U (discrete ipomsets
ipomsets without interfaces) without interfaces)
morphisms in iiPoms(U, V/): interval morphisms in Coh(U, V): step sequences
ipomsets P with sources U [(S1, U1, T1) ... (Sn, Un, T,,)]N
and targets V with S; = U and T, =V
composition: gluing composition: concatenation
identities idy = yUy identities idy = yUy

e Coh is category generated from (directed multi)graph Q under relations ~
® isomorphisms ¢ : iiPoms <+ Coh : W provided by

® ®(P) = [w]~, where w is any step decomposition of P;

® U([Py...Pp)) = Py*---x P, (needs lemma)
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Algebra?

® this is not cancellative:

QL
.
I
L
.
Il

® “categorical concurrent Kleene algebra”?

® (what to do about subsumptions? 2-categories?)
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Path Objects

Theorem
For every ipomset P there exists an HDA 0OF := X such that L(X) = {P}|.

® the path object of P
® ad-hoc construction
Lemma (very useful!)
For any ipomset P and HDA X, P € L(X) = 3f : [P — X.

® express languages using morphisms
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Now Look At Those Down-Closed Subsets!

Uli Fahrenberg

abcd

AN
/

abc acd

ac cd

N4
NN
NS
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Now Look At Those Down-Closed Subsets!

abcd
abc acd

a—— b \\ / \
/ ac cd

c—d / \\ /

a C
® join-irreducibles = principal downsets
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Now Look At Those Down-Closed Subsets!

abcd

/N

abc acd
a7b \\/ \Cd
c—d / /'
\@/

® join-irreducibles = principal downsets

® induced order isomorphic to P
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Now Look At Those Down-Closed Subsets!

abcd

AN
/

abc acd

ac cd

£
N4
NN

N S

a c
® join-irreducibles = principal downsets
® induced order isomorphic to P
® principal strict downsets totally ordered <= P interval order
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Now Look At Those Down-Closed Subsets!

abcd

AN
/!

abc acd

ac cd

|
N
NN
N

® join-irreducibles = principal downsets

® induced order isomorphic to P

® principal strict downsets totally ordered <= P interval order
e Conjecture: path object (17 £ CATO-closure of subset lattice
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Conclusion

@ The Geometry of Concurrency

® Concurrent Semantics of Petri Nets

© Languages of Higher-Dimensional Automata
O Advanced Topics

® Geometry and topology of concurrency provide intuition and methodology
® Petri nets are a nice and useful model for concurrent systems

® Higher-dimensional automata are a powerful model for concurrent systems with a
nice language theory

® Non-interleaving concurrency is both nice and necessary

® (Categories, functors, and presheavs are everywhere
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