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A functor T : C — B is faithful (or an embedding) when to every pair
¢, ¢ of objects of C and to every pair f,, f,:c—c of parallel arrows of
Ctheequality Tf, = Tf, : Tc — Tc implies f|, = f,. Again,composites of
faithful functors are faithful. For example, the forgetful functor Grp— Set
is faithful but not full and not a bijection on objects.

These two properties may be visualized in terms of hom-sets (see (2.5)).
Given a pair of objects ¢, ¢’ € C, the arrow function of T:C— B assigns
to each f:c—¢ an arrow Tf:Tc—Tc¢ and so defines a function

T. . hom(c,¢)>hom(T¢, T¢'), f[~Tf.

Then T is full when every such function is surjective, and faithful when
every such function is injective. For a functor which is both full and
faithful (i.e., “fully faithful”), every such function is a bijection, but this
need not mean that the functor itself is an isomorphism of categories, for
there may be objects of B not in the image of 7.

A subcategory S of a category C is a collection of some of the objects
and some of the arrows of C, which includes with each arrow f both the
object dom f and the object cod f, with each object s its identity arrow
1, and with each pair of composable arrows s—s'—s” their composite.
These conditions ensure that these collections of objects and
arrows themselves constitute a category S. Moreover, the injection
(inclusion) map S— C which sends each object and each arrow of S to
itself (in C) is a functor, the inclusion functor. This inclusion functor is
automatically faithful. We say that S is a full subcategory of C when the
inclusion functor S—C is full. A full subcategory, given C, is thus
determined by giving just the set of its objects, since the arrows between
any two of these objects s, s are all morphisms s— s’ in C. For example,
the category Set, of all finite sets is a full subcategory of the category Set.

Exercises

1. Show how each of the following constructions can be regarded as a functor:
The field of quotients of an integral domain; the Lie algebra of a Lie group.

2. Show that functors 1—C, 2—C, and 3— C correspond respectively to objects,
arrows, and composable pairs of arrows in C.

3. Interpret “functor” in the following special types of categories: (a) A functor
between two preorders is a function T which is monotonic (ie., p<p’ implies
Tp = Tp).(b) A functor between two groups (one-object categories) is a morphism
of groups. (c) If G is a group, a functor G—Set is a permutation representation
of G, while G— Matr, is a matrix representation of G.

4. Prove that there is no functor Grp— Ab sending each group G to its center
(consider S; — S3 — S3, the symmetric groups).

5. Find two different functors T: Grp— Grp with object function T(G)=G the
identity for every group G.
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sets (in some universe U). Every ordinal n={0, {,....,n— 1} is a finite
set, so the inclusion S is a functor S : Finord—Set,. On the other hand,
each finite set X determines an ordinal number n = # X, the number of
clements in X ; we may choose for each X a bijection 0y : X — # X. For
any function f : X — Y between finite sets we may then define a corre-
sponding function #/ : # X — # Y between ordinals by #/ = 0y f 65"
this ensures that the diagram

X% a4 x

e

Y2 %Y

will commute, and makes # a functor # :Set,— Finord. If X is itself
an ordinal number, we may take 8y to be the identity. This ensures that

the composite functor # - S is the identity functor I' of Finord. On the
other hand, the composite S # is not the identity functor I : Set,—Set,,
because it sends each finite set X to a special finite set — the ordinal number
n with the same number of elements as X. However, the square diagram
above does show that 8: I-=§ # is a natural isomorphism. All told we
have I = So %, I'= 4 -8§.

More generally, an equivalence between categories C and D is defined
to be a pair of functors S: C—D, T: D—C together with natural iso-
morphisms I.= T- S, Ip =S~ T. This example shows that this notion
(to be examined in §IV.4) allows us to compare categories which are
“alike” but of very different “sizes”.

We shall use many other examples of naturality. As Eilenberg-
Mac Lane first observed, “category” has been defined in order to be able
to define “functor” and “functor” has been defined in order to be able to
define “natural transformation”.

Exercises

1. Let S be a fixed set, and X® the set of all functions h: S— X. Show that X — X*
is the object function of a functor Set—Set, and that evaluation ey : X SxS»X,
defined by e(h, s) = h(s), the value of the function / at s€ S, is a natural trans-
formation.

2. If H is a fixed group, show that G+ H x G defines a functor H x — : Grp— Grp,
and that each morphism f : H— K of groups defines a natural transformation
Hx —-Kx —.

3. If B and C are groups (regarded as categories with one object each) and
S, T:B—C are functors (homomorphisms of groups), show that there is a
natural transformation S— T if and only if S and T are conjugate; i... if and
only if there is an element he C with Tg=h(Sg)h~" for all ge B.
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Exercises

1. Find a category with an arrow which is both epi and monic, but not invertible
(e.g., dense subset of a topological space).

. Prove that the composite of monics is monic, and likewise for epis.

. Ifacompositeg f is monic, so is f. Is this true of g?

. Show that the inclusion Z—Q is epi in the category Rng.

. In Grp prove that every epi is surjective (Hint. If ¢ : G— H has image M not H,
use the factor group H/M if M has index 2. Otherwise, let Perm H be the group
of all permutations of the set H, choose three different cosets M, Mu and Mv
of M, define o € Perm H by a(xu) = xv, 6(xv)=xu for xe M, and ¢ otherwise
the identity. Let y : H— Perm H send each h to left multiplication y, by h, while
wi=0"'y,0. Then yo =y'p, but p+y’).

6. In Set, show that all idempotents split.

7. An arrow f :a—b in a category C is regular when there exists an arrow g :b—a
such that fg f = f. Show that f is regular if it has either a left or a right inverse,
and prove that every arrow in Set with a # ¢ is regular.

8. Consider the category with objects (X, e, t), where X isaset,ee X,and t: X — X,
and with arrows f:{X,e t>—(X’ &, t'> the functions f on X to X' with
fe=¢ and ft=r'f. Prove that this category has an initial object in which X
is the set of natural numbers, e =0, and ¢ is the successor function.

9. If the functor T:C~— B is faithful and Tf is monic, prove f monic.

v N

6. Foundations

One of the main objectives of category theory is to discuss properties
of totalities of Mathematical objects such as the “set” of all groups or
the “set” of all homomorphisms between any two groups. Now it is the
custom to regard a group as a set with certain added structure, so we
are here proposing to consider a set of all sets with some given structure.
This amounts to applying a comprehension principle: Given a property
@(x) of sets x, form the set {x|@(x)} of all sets x with this property.
However such a principle cannot be adopted in this generality, since it
would lead to some of the famous paradoxical sets, such as the set of all
sets not members of themselves.

For this reason, the standard practice in naive set theory, with the
usual membershiprelatione, is to restrict the application of the comprehen-
sion principle. One allows the formation from given sets u, v of the set
{u, v} (the set with exactly u and v as elements), of the ordered pair
{u,v), of an infinite set (the set w={0,1,2, ...} of all finite ordinals),
and of

The Cartesian Product uxv={{x,y>|xeu and yev},
The Power Set Pu={v|vCu},
The Union (of a set x of sets) ux={y|yez for some z€ x}.
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Adjoints

If a monoid M is regarded as a discrete category, with objects the elements

x e M. then the multiplication of M is a bifunctor p: M xM—M. If M is a
group, show that the group inverse provides right adjoints for the functors
u(x, =) and u(—,y) : M — M. Conversely, does the presence of such adjoints
make a monoid into a group?

. Describe units and counits for pushout and pullback.
. If the category J is a disjoint union (coproduct) LI J, of categories J;. for index

k in some set K, with I, : J,—J the injections of the coproduct. then each functor

F :J—C determines functors Fy=Fl : ,—C.

(a) Prove that LimF = [T, Lim F,, if the limits on the right exist.

(b) Show that every category J is a disjoint union of connected categories
(called the connected components of J).

(¢) Conclude that all limits can be obtained from products and limits over
connected categories.

. (a) If the category J is connected, prove for any ce C that Limdc=¢ and

Colim 4c¢ = ¢, where Ac : J — C is the constant functor.
(b) Describe the unit for the right adjoint to 4: c—-C’.

. (Smythe.) Show that the functor O : Cat — Set assigning to each category C

the set of its objects has a left adjoint D which assigns to each set X the discrete
category on X, and that D in turn has a left adjoint assigning to each category
the set of its connected components. Also show that O has a right adjoint
which assigns to each set X a category with objects X and exactly one arrow
in every hom-set.

If a category C has both cokernel pairs and equalizers, show that the functor
K : C?— C* which assigns to each arrow of C its cokernel pair has as right
adjoint the functor which assigns to each parallel pair of arrows its equalizing
arrow.

. If C has finite coproducts and a € C, prove that the projection Q: (a | O)—C

of the comma category (Q{a—c)=c) has a left adjoint, with c¢—~(@—a LI ¢).
If X is a set and C a category with powers and copowers, prove that the copower
¢ X - ¢ is left adjoint to the power ¢—c*.

3. Reflective Subcategories

For many of the forgetful functors U:A— X listed in §2, the counit
¢: FU=I, of the adjunction assigns to each ae A the epimorphism

£yt

F(U a)—a which gives the standard representation of a as a quotient

of a free object. This is a general fact: Whenever a right adjoint G is
faithful, every counit ¢, of the adjunction is epi.

Theorem 1. For an adjunction (F,G,n,e>: X—A: (i) G is faithful

if and only if every component ¢, of the counit ¢ is epi, (i1) G is Sull if and
only if every ¢, is a split monic. Hence G is full and faithful if and only
if each ¢, is an isomorphism F Ga=a.

The proof depends on a lemma.
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Duality theorems in functional analysis are often instances of equiv-
alences. For example, let CAb be the category of compact topological
abelian groups, and let P assign to each such group G its character group
PG, consisting of all continuous homomorphisms G—R/Z. The
Pontrjagin duality theorem asserts that P : CAb— Ab® is an equivalence
of categories. Similarly, the Gelfand-Naimark theorem states that the
functor C which assigns to each compact Hausdorff space X its abelian
C*-algebra of continuous complex-valued functions is an equivalence
of categories {see Negrepontis [1971]).

Exercises

1. Prove: (a) Any two skeletons of a category C are isomorphic.

(b) If 4, is a skeleton of 4 and C, a skeleton of C, then A and C are equivalent
if and only if A, and C, are isomorphic.

2. (a) Prove: the composite of two equivalences D—C, C— A4 is an equivalence.
(b) State and prove the corresponding fact for adjoint equivalences.

3 IfS: A—C is full, faithful, and surjective on objects (each ce C is ¢ =Sa for
some ae A), prove that there is an adjoint equivalence (T,S;1,e):C—A4
with unit the identity (and thence that T is a left-adjoint-right-inverse of S).

4 Given a functor G: A— X, prove the three following conditions logically
equivalent:

(a) G has a left-adjoint-left-inverse.

{b) G has a left adjoint, and is full, faithful, and injective on objects.

(c) There is a full reflective subcategory Y of X and an isomorphism H: A=Y
such that G = K H, where K: Y— X is the insertion.

S If J is a connected category and 4 : C— C” has a left adjoint (colimit), show that
this left adjoint can be chosen to be a left-adjoint-left-inverse.

5. Adjoints for Preorders

Recall that a preorder P is a set P={p,p’, ...} equipped with a reflexive .
and transitive binary relation p < p’, and that preorders may be regarded
as categories so that order-preserving functions become functors. An

order-reversing function L on P to Q is then a functor L. P—Q°®.

Theorem 1 (Galois connections are adjoint pairs). Let P, Q be two
preorders and L:P—Q°, R:Q—P two order-preserving functions.
Then L (regarded as a functor) is a left adjoint to R if and only if, for all
pePand gqeQ,

Lp=q in Q ifandonlyif pSRq in P. 0

When this is the case, there is exactly one adjunction ¢ making L the left
adjoint of R. For allpand g, p<RLp and LRq = q; hence also

Lp=LRLp=2Lp, RqsRLRq=Rq. )



