IV. Adjoints

1. Adjunctions

We now present a basic concept due to Kan, which provides a different
formulation for the properties of free objects and other universal con-
structions. As motivation, we first reexamine the construction (§ ITI.1)
of a vector space Vy with basis X. For a fixed field K consider the functors

|4
Set 4—"U-*Vct,( ,

where, for each vector space W, U(W) is the set of all vectors in W,
so that U is the forgetful functor, while, for any set X, V(X) is the vector
space with basis X. The vectors of V(X) are thus the formal finite linear
combinations X r;x; with scalar coefficients r, e K and with each x; € X,
with the evident vector operations. Each function g : X — U (W) extends
to a unique linear transformation f:V(X)— W, given explicitly by
f(Zrix)=2Xri(gx;) (ie, formal linear combinations in V(X) to actual
linear combinations in W). This correspondence y: g+— f has an inverse
@ f—f| X, the restriction of f to X, hence is a bijection

@ Vet (V(X), W)=Set(X, UW)).

This bijection ¢ = @y y is defined “in the same way” for all sets X and’
all vector spaces W. This means that the @y y are the components of a
natural transformation ¢ when both sides above are regarded as functors
of X and W. It suffices to verify naturality in X and in W separately.
Naturality in X means that for each arrow h: X'— X the diagram

Vet (V(X), W) —2— Set(X, U(W))

(Vh)*l 1;:"

Vet (V(X), W) —2— Set(X", U(W)),

where h* g = g ~ h, will commute. This commutativity follows from the
definition of ¢ by a routine calculation, as does also the naturality in W.
Note next several similar examples.
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The free category C=FG on a given (small) graph G is a functor
Grph— Cat: it is related to the forgetful functor U : Cat— Grph by the
fact (§ I1.7) that each morphism D : G— U B of graphs extends to a unique
map D': FG— B of categories; moreover, DD’ is a natural isomor-
phism

Cat(F G, B) = Grph(G, UB) .

Inthecategory of smallsets,each functiong : § x T— R oftwo variables
can be treated as a function ¢g : S — hom(7, R) of one variable (in S)
whose values are functions of a second variable (in T); explicitly,
pg)slt = g(s,t) for se S, t e T. This describes ¢ as a bijection

¢ - hom(S x T, R) = hom(S,hom(7, R)) .

It is natural in S, T, and R. If we hold the set T fixed and define functors
F,G:Set—Set by F(8)=5xT, G(R)=hom(T, R), the bijection takes
the form

hom(F(S), R) @ hom(S, G(R))

natural in S and R, and much like the previous examples.
For modules 4, B, and C over a commutative ring K there is a
similar isomorphism

hom(A ® g B, C) = hom(A4, hom(B, C))
natural in all three arguments.

Definition. Let 4 and X be categories. An adjunction from X to A
is a triple (F, G, @) : X— A, where F and G are functors

F
Xe=4,

while @ is a function which assigns to each pair of objects xe X, ae A a
bijection of sets

o=@, . AFx,a)= X(x,Ga) (D
which is natural in x and a.

Here the left hand side A(Fx, a) is the bifunctor
X x A7, gor i g PO, Gt
which sends each pair of objects {x, a) to the hom-set A(Fx, a), and the
righthand sideisasimilar bifunctor X°? x 4—Set. Therefore the naturality
of the bijection ¢ means that for all k:a—a’ and h:x'—x both the
diagrams:

A(Fx,a)—2— X(x,Ga) A(Fx, a)—*— X (x, Ga)

k*J 1(61()* (Fhy* 1 J L 2

A(Fx,a)—%— X(x, Ga') A(Fx',a)—2—X(x', Ga)
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will commute. Here k, is short for A(F x, k), the operation of composition
with k, and h* = X(h, Ga).

This discussion assumes that ail the hom-sets of X and A are small.
If not, we just replace Set above by a suitable larger category Ens of sets.

An adjunction may also be described without hom-sets directly in
terms of arrows. It is a bijection which assigns to each arrow f: Fx—a
an arrow ¢ f =rad f: x— Ga, the right adjunct of f, in such a way that
the naturality conditions of (2),

ok )=Gk of, o(f Fhy=of h, (3

hold for all f and all arrows h:x'—x and k:a—d’. It is equivalent to
require that ¢ ~' be natural; i.e., that for every i,k and g: x— Ga one
has

© gh=9¢ 'g Fh, ¢ (Gkeg)=k ¢ 'g. C)

Given such an adjunction, the functor F is said to be a left-adjoint
for G, while G is called a right adjoint for F. (Some authors write F —G;
others say that F is the “adjoint” of G and G the “coadjoint™ of F, but
other authors say the opposite; therefore we shall stick to the language of
“left” and “right” adjoints.)

Every adjunction yields a universal arrow. Specifically, set a = Fx
in (1). The left hand hom-set of (1) then contains the identity 1: Fx— Fx;
call its ¢-image n,. By Yoneda’s Proposition 111.2.1, this . is a universal
arrow

W.x:x—"Gan r’x:(p(lFx)*
from xe X to G. The adjunction gives such a universal arrow n, for
every object x. Moreover, the function x—x_ is a natural transformation
Iy— G F because every diagram

X'~ GFX
hl JVGFh
x =2 GFx
is commutative. This one proves by the calculation
GFh o(lp )=@(Fh-1p)=0(lpy, FRy=¢(lg) h.

based on the Eq. (3) describing the naturality of ¢. This calculation may
also be visualized by the commutative diagram

A(Fx', Fx'y = A(Fx', Fx) <" 4(Fx, Fx)

T

X(x',GFXx) XX, GFx)e——X(x,GFXx),

{G Fh«

where h* = X(h, 1) and h, = X(1, h).
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The bijection ¢ can be expressed in terms of the arrows n, as
@(f)=G(fIm, for f:Fx—a; ()
indeed, by the naturality (3) of ¢ we may compute that
o(f)=0(folrx) =Gfoplrs=Gfon,.

This computation may be visualized by chasing I around the commutative
square

A{Fx, Fx})—2—X(x,GFx) I,
e
A(Fx,a)—=2 X(x,Ga) [ l=of=Gfn,.

Dually, the adjunction gives a universal arrow from F. Indeed,
set x =Ga in the adjunction (1). The identity arrow 1: Ga— Ga is now
present in the right-hand hom-set; its image under ¢! is called ¢,

t..FGa—a, e=¢ '(g,), acAd,

and is a universal arrow from F to a. As before, ¢ is a natural transforma-
tion ¢: F G=1,, and

¢ Yg)=¢,-Fg for g:x—Ga.
Finally, take x = Ga. Then ¢,= ¢~ '(15,) gives, by the formula (5) for ¢,
lga=0le)) = Gle)) < Nga-
This asserts that the composite natural transformation
G—>GFG—4—G

1s the identity transformation.
To summarize, we have proved

Theorem 1. An adjunction {(F, G, @) : X — A determines
(i) A natural transformation n : Iy=> G F such that for each object x the
arrow n_ is universal to G from x, while the right adjunct of each f: Fx—ais

of=Gfon,:x—Ga; (6)

(ii) A natural transformation ¢: F G- 1, such that each arrow ¢, is
universal to a from F, while each g : x— G a has left adjunct

@ 'g=¢,-Fg:Fx—a. (7N
Moreover, both the following composites are the identities (of G, resp. F).

G—"¢ GFG~%G, F—E1 FGF—EF. 8)
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We call n the unit and ¢ the counit of the adjunction. (Formerly,
we called n a “front adjunction” and ¢ a ~back adjunction”)

The given adjunction is actually already determined by various
portions of all these data, in the following sense.

Theorem 2. Eachadjunction (F, G, @) : X — Aiscompletely determined
by the items in any one of the following lists:

(1 Functors F. G, and a natural transformation n:1y-GF such
that each n . x— G Fx is universal to G from x. Then ¢ is defined by (6).

(i) The functor G: A— X and for each x € X an object Fyx e A and
a universal arrow n.:x—GFyx from x to G. Then the functor F has
object function Fo and is defined on arrows h: x—x"by GFh -y, =n,h.

(iti) Functors F, G, and a natural transformation ¢:F G-=>1, such
that each ¢, F Ga—a is universal from F to a. Here ¢~ ' is defined by (7).

(iv) The functor F: X— A and for each ae A an object G,ae X and
an arrow ¢, FGya—a universal from F to a.

(v) Functors F, G and natural transformations n:Iy-=->GF and
¢: F G- 1, such that both composites (8) are the identity transformations.
Here ¢ is defined by (6) and ¢ ' by (7).

Because of (v). we often denote the adjunction (F,G,¢)> by
CF.Gopey  X—A,

Proof. Ad (i): The statement that 5_is universal means that to each
f:x— Ga there is exactly one g as in the commutative diagram
n

Fx x—->—GFx
fg f ng
a, Ga.

-This states precisely that 8(g) = G g o 5, defines a bijection

0:A(Fx,a) > X(x,Ga) .
This bijection # is natural in x because # is natural, and natural in a be-
cause G is a functor, hence gives an adjunction {(F, G,8>. In case n was
the unit obtained from an adjunction {(F, G, ¢), then 8 = ¢.

The data (i1) can be expanded to (i), and hence determine the adjunc-
tion. In (ii) we are given simply a universal arrow (Fyx, 5> for every
object x € X'; we shall show that there is exactly one way to make F,
the object function of a functor F for which # : I, G F will be natural.
Specifically, for each h: x—x’ the universality of 5 states that there is
exactly one arrow (dotted)

Fyx x—= GF,x

L

v
Fox' x'—I= S GFyx
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which can make the diagram commute. Choose this arrow as
Fh: Fyx— Fyx'; the commutativity states that s is now natural, and it is
easy to check that this choice of Fii makes F a functor.

The proofs of parts {ii1) and (iv) are dual.

To prove part (v) we use  and ¢ to define functions

A(Fx, a)==X(x, Ga)

by o f=Gf y, foreach f: Fx—a and Og=¢, Fyg for each g: x—Ga.
Then since G is a functor and # is natural

p0g=Ge, GFg n,=Ge, g, 9.

But our hypothesis (8) states that Ge, 55,=1. Hence ¢ = id. Dually
0 = id. Therefore ¢ is a bijection (with inverse 0). It is clearly natural,
hence is an adjunction (and, if we started with an adjunction, it is the one
from which we started).

This theorem is very useful. For example, parts (ii) and (iv) construct
an adjunction whenever we have a universal arrow from (or to) every
object of a given category. For example, the category C has finite products
when for each pair {a, b) € CxC there is a universal arrow from
4:C—>CxCto<a,b). By the theorem above we conclude that the func-
tion {a,b) —axb giving the product object is actually a functor
C x C—C.and that this functor is right adjoint to the diagonal functor 4:

@ (CxCy(dce,{a,bdy= C(c,axbh).
Using the definition of the arrows in C x C, this is
@ :Clc,a)xC(c,by=C(c,axb).

The counit of this adjunction (set c=axb on the right) is an arrow
(axb,axby—{a,by; it is thus just a pair of arrows a<—axb—b;
namely, the projections p:axb—a and g:axb—b of the product.
The adjunction ¢ "' sends each f: c—a x btothe pair (pf, q f;this is the
way in which ¢ 1s determined by the counit ¢.

Similarly, if the category C has coproducts <{a,b>+>allb, they
define the coproduct functor C x C — C which is a left adjoint to 4:

Clall b, )= (C x C)({a, b, Ac).

All the other examples of limits (when they always exist) can be similarly
read as examples of adjoints. In many further applications, it turns
out that proving universality is an easy way of showing that adjoints
are present.
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On the other hand, part (v) of the theorem describes an adjunction
by two simple identities

F- LS FGF GFG—" G
AN i::l’ G::j oz (9)
F ' G

on the unit and counit of the adjunction. These triangular identities
make no explicit use of the objects of the categories 4 and X, and so are
easy to manipulate. As we shall soon see, this is convenient for discussing
properties of adjunctions. {For some authors, these identities are said to
make 5 a “quasi-inverse” to ¢.)

Corollary 1. Any two left-adjoints F and F' of a functor G: A—X
are naturally isomorphic.

The proof is just an application of the fact that a universal arrow,
like an initial object, is unique up to isomorphism. Explicitly, adjunctions
(F,G, @) and (F', G, ¢") give to each x two universal arrows x—GFx
and x— G F'x; hence there 1s a unique isomorphism 8, : Fx— F'x with
GO, n,=n,: 1t is easy to verify that §: F-F'is natural.

Corollary 2. A functor G: A— X has a left adjoint if and only if,
for each x € X, the functor X(x, Ga) is representable as a functor of ae A.
If @: A(Fyx,a)= X(x, Ga) is a representation of this functor, then Fy is
the object function of a left-adjoint of G for which the bijection ¢ is natural
in a and gives the adjunction.

This is just a restatement of part (ii) of the theorem. Equivalently,
G has a left-adjoint if and only if there is a universal arrow to G from every
xeX.

We leave the reader to state the duals.

Adjoints of additive functors are additive.

Theorem 3. If the additive functor G : A — M between Ab-categories
A and M has a left adjoint F . M— A, then F is additive and the adjunction
bijections
@:AFm,a)= M(m, Ga)

are isomorphisms of abelian groups ( for all me M, ac A).

Proof. If n:I-=GF is the unit of the adjunction, then ¢ may be
written as ¢ f =G f n,, for any f: Fm—a. If also f': Fm—a, the ad-
ditivity of G gives

of+ =G+ =G f+GCGfM,=GCf n,+GCf n,=0f+of
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Therefore ¢ is a morphism of abelian groups. Next take g, ¢ :m—n
in M. Since » is natural,

GFlg+9):Nw=nd9+9)=n,9+n,9 .
On the other hand, since G is additive,
G(Fg+Fg)n,=(GFg+GFg'm,,=GFg-n,+GFg' n,=n,9+n.9' .

The equality of these two results and the universal property of N, sShow
that F(g+g')=Fg+ Fg'. Hence F is additive.
Dually, any right adjoint of an additive functor is additive.

Exercises

1. Show that Theorem 2 can have an added clause (and its dual):
(vi) A functor G: A— X and for each x € X a representation ¢, of the functor
X(x,G—): A—Set.

2. (Lawvere.) Given functors G: 4 — X and F: X — A4, show that each ad-
Jjunction {F, G, p> can be described as an isomorphism 6 of comma categories
such that the following diagram commutes

0AF | L)=(x ] G)

L

XxA = XxA4.

Here the vertical maps have components the projection functors P and Q of
11.6(5).

3. For the adjunction {4, x. @) — product right adjoint to diagonal — show that
the unitd, : ¢—c x cfor each object ¢ € Cis the unique arrow such that the diagram

¢
/a\

Cpexepe

commutes. (This arrow 4, is often called the diagonal arrow of ¢.) If C = Set,
show that d.x={x, x) for xec.

4. (Paré.) Given functors G: 4 — X and K : X — A and natural transformations
£:KG-=id,, ¢:idy-~GK such that Ge-9gG=15:G-GK GG, prove that
¢K - Kg: K- K isan idempotent in A* and that G has a left adjoint if und only if
this idempotent splits; explicitly if ¢eK - K¢ splits as «-f with f-x=1 and
B: K-> F, then F is a left adjoint of G with unit G - ¢ and counit ¢ - ¢ G.

2. Examples of Adjoints

We now summarize a number of examples of adjoints, beginning with
a table of left-adjoints of typical forgetful functors.
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Forgetful functor

U : R-Mod— Set
U : Cat— Grph

U : Grp—Set

: Ab—Set

: Ab— Grp

: R-Mod— Ab
U : R-Mod-S— R-Mod
U : Rng—Mon

(cf. Exercise I11.1.1)
U: K-Alg— K-Mod

U : Fid— Dom,,

(cf. § I11.1)
U : Compmet— Met

Left adjoint F

X—FX

Free R-module, basis X
G—CG

Free category on graph G
X—FX

Free group, generators
xeX

X—FX

Free abelian group on X
G+—G/[G, G}

Factor commutator group
A—~R®A

A—>AR®S

M—Z(M)

(integral) monoid ring
V=TV

Tensor algebra on V
D—QD

Field of quotients
Completion of metric space
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Unit of adjunction

j: X—UFX(cf§IIL1)
“insertion of generators”
G—-UCG

“insertion of generators”

X—-UFX
“insertion of generators”

“insertion of generators”
G—G/[G, G]

projection on the quotient
A->UR®A)

a—1®a

A—-U(A®S)

a—a®1

M->UZM

mt—m

VeTv

“insertion of generators”
DcUQD

“insertion of D:awa/1”

@ 1IL1)

There is a similar description of counits. For example, in the free
R-module F X generated by elements jx ={x) for x e X, the elements
may be written as finite sums X r;{x;> with scalars r; e R. Then for any
R-module A the counit ¢,: FUA— A is 2 ria;»— 2 r;a; (linear com-
binations in A). In other words &, is the epimorphism appearing in the
standard representation of an arbitrary R-module as a quotient of a
free module (the free module on its own elements as generators).

Next, we list some left and right adjoints (which need not exist in
every category C) for diagonal functors; with the unit when C is Set.

Diagonal Adjoint Unit Counit
Sunctor
4:C—-CxC Left: Coproduct (pair of) injections “folding” map
H:CxC—C ita—allb clUc—c
{a,bD>—>allb jib—allb ix>x, jx>x
Right: Product Diagonal arrow (pair of) projections
m:CxC—-C S.:c—exce p:axb—a

{a,by+—axb

x—={Xx, X

g:axb—h
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Diagonal Adjoint Unit Counit
functor
C—1 Left: Initial object s s—c¢
Right: Terminal object r c—t
A:C—CH Left: Coequalizer Coequalizing arrow  Identity
(111.3.6) {f. gD Fcoeq. object e gL e ey 1ic—e
(111.4.7) Right: Equalizer d Identity Equalizing
{f, g> —equal. object dd, d>—{f
A:C—C™ 7 Left: (Vertex of) pushout
(I11.3.7)
Right: (Vertex of) pullback
(111.4.8)
A:C—C Left: Colimit object Universal cone
Right: Limit object Universal ¢

In the case of limits, the form of the unit depends on the numbe
of connected components of J. Here a category J is called connecte
when to any two objects j, ke J there is a finite sequence of arrow

J=Jo—=ji—J2— " jwm-1+Jji,=k (both directions possible)

joining j to k (see Exercises 7, 8).

Duality functors provide further examples. For vector spaces V, ¥
over a field K, the dual D is a contravariant functor on Vet to Ve
given on objects by DV = Vet(V, K) with the usual vector space structur
and on arrows h: V—W as Dh: DW—DV, where (Dh) f = fh for eac
f:W—K. A function

@ =@y w: Vet{V, Vet(W, K))— Vet(W, Vet(V, K)) (1

is defined for h: V--DW by [(ehyw]v=(hv)w for all veV, we W
Since g oy w is the identity, each ¢ is a bijection. This bijection can b
made into an adjuction as follows. The contravariant functor D leads tc
two different (covariant!) functors with the same object function,

D:Vet®*—>Vet, D°P:Vet— VetP,
defined (as usual) for arrows h°": W—V and h: V— W by
Dh®*=Dh:DW—DV; D®h=(Dh®*:DV—DW.
The bijection ¢ of (1) above may now be written as
Vet®(DPW, VY= Vet(W, D V), (2

natural in V and W. Therefore D is the left adjoint of D. (Warning
Itisnot a right adjoint of D, see § V.5, Exercise 2.) If k, : W— DD W is th
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usual canonical map to the double dual, the unit of the adjunction
(set V=D Win (2)) is this map iy = ky : W— D D°® W, and the counit
is an arrow g, : D°*DV—V in Vet which turns out to be ¢, = (i)°?
for the same n.

This example illustrates the way in which adjunctions may replace
isomorphisms of categories. For finite dimensional vector spaces, D
and D°P are isomorphisms; for the general case, this is not true, but D is
the right adjoint of D

This example also bears on adjoints for other contravariant functors.
Two contravariant functors S from 4 to X and Tfrom X to A4 are “adjoint
on the right” (Freyd) when there is a bijection A(a, Tx)= X(x,Sa).
natural in a and x. We shall not need this terminology, because we can
replace S and T by the covariant functors S: 4A®°— X and T: X°"— A
and form the dual $°°: 4 — X°?, also covariant: thus the natural bijection
above becomes X°P(S°Pqa, x)= A(a, Tx), and so states that S°P is left
adjoint (in our usual sense) to T — or, equivalently, that T°? is left adjoint
to S. It is not necessarily equivalent to say that T and S are adjoint
“on the left”.

The next three sections will be concerned with three other types of
adjoints: A left adjoint to an inclusion functor (of a full subcategory)
is called a reflection; certain other special sorts of adjoints are
“equivalences™ of categories. Some other amusing examples of adjoints
are given in the exercises to follow, some of which require knowledge
of the subject matter involved. Goguen [1971] shows for finite state
machines that the functor “minimal realization” is left adjoint to the
functor “behavior”. The reader is urged to find his own examples as well.

Exercises

t. For K a field and V a vector space over K, there is an “exterior algebra™ E(V),
which is a graded, anticommutative algebra. Show that E is the left adjoint
of a suitable forgetful functor (one which is not faithful).

2. Show that the functor U: R-Mod— Ab has not only a left adjoint 4+—R® A,
but also a right adjoint 4 —homg(R, A).

3. For K a field, let Lieg be the category of all (small) Lie algebras L over K,
with arrows the morphisms of K-modules which also preserve the Lie bracket
operation {a,b> —[a,b]. Let V: Alg— Lieg be the functor which assigns to each
(associative) algebra A the Lie algebra VA on the same vector space, with
bracket [a, b] = ub—buforu, b € A. Using the Poincaré-Birkhoff-Witt Theorem
show that the functor E, where E L is the enveloping associative algebra of L,
1s a left adjoint for V.

4. Let Rng' denote the category of rings R which do not necessarily have an identity
clement for multiplication. Show that the standard process of adding an identity
to R provides a left adjoint for the forgetful functor Rng— Rng’ (forget the
presence of the identity).
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. If a monoid M is regarded as a discrete category, with objects the elements

x e M, then the multiplication of M is a bifunctor y: M xM—M. If M is a
group, show that the group inverse provides right adjoints for the functors
#(x, =) and u(—,y) : M — M. Conversely, does the presence of such adjoints
make a monoid into a group?

. Describe units and counits for pushout and pullback.
- If the category J is a disjoint union (coproduct} L1 J, of categories J,, for index

kin some set K, with I, : J,—J the injections of the coproduct, then each functor

F:J-—C determines functors F,=F [, : J,—C.

(@) Prove that LimF = [1, Lim F,. if the limits on the right exist.

(b) Show that every category J is a disjoint union of connected categories
(called the connected components of J).

(c} Conclude that all limits can be obtained from products and limits over
connected categories.

. (a) If the category J is connected. prove for any ce € that LimAdc¢=¢ and

Colim 4¢ = ¢, where Ac : J — C is the constant functor.
(b) Describe the unit for the right adjoint to 4: C—(’.

. (Smythe.) Show that the functor O : Cat — Set assigning to each category C

the set of its objects has a left adjoint D which assigns to each set X the discrete
category on X, and that D in turn has a left adjoint assigning to each category
the set of its connected components. Also show that O has a right adjoint
which assigns to each set X a category with objects X and exactly one arrow
in every hom-set,

. If a category C has both cokernel pairs and equalizers, show that the functor

K:C?—CY" which assigns to each arrow of C its cokernel pair has as right
adjoint the functor which assigns to each parallel pair of arrows its equalizing
arrow.

. If C has finite coproducts and a € C, prove that the projection Q:(a | C)—C

of the comma category (Q(a—c¢)=c) has a left adjoint, with ¢—~(a—a Ll ¢).

. lf X isasetand Ca category with powers and copowers, prove that the copower

c=+X - ¢ s left adjoint to the power ¢--¢¥.

3. Reflective Subcategories

For many of the forgetful functors U:A— X listed in § 2. the counit
¢ FU=>I, of the adjunction assigns to each ae A the epimorphism

£, :

F(U a)—a which gives the standard representation of a as a quotient

of a free object. This is a general fact: Whenever a right adjoint G is
faithful, every counit ¢, of the adjunction is epi.

Theorem 1. For an adjunction (F,G,n,e): X—A: (i) G is faithful

if and only if every component ¢, of the counit ¢ is epi, (ii) G is full if and
only if every ¢, is a split monic. Hence G is full and faithful if and only
if euch ¢, is an isomorphism FGa=>a.

The proof depends on a lemma.
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Lemma. Let f*: A(a, =)= A(b, —) be the natural transformation
induced by an arrow f:b—a of A. Then f* is monic if and only if f is epi,
while f* is epi if and only if f is a split monic (i.e., if and only if [ has a
left inverse).

Note that f*—f is the bijection Nat(A(a, —), A(h, —))= A(b, a)
given by the Yoneda lemma.

Observe, also, that for functors S, T: C— B, a natural transformation
7: 8- T is epi (respectively, monic) in B if and only if every component
t,:S,— T, 1s epi (respectively, monic) in B for B =Set; this follows by
Exercise 111.4.4, computing the pushout pointwise as in Exercise II1.5.5.

Proof. For he A(a,c¢), f*h=hf. Hence the first result is just the
definition of an ept f. If f* is epi, there is an hy:a—b with
S*ho=h, f=1:b—b,so f has a left inverse. The converse is immediate.

Now we prove the theorem. Apply the Yoneda Lemma to the natural
transformation (arrow function of G followed by the adjunction)

A(a, 0)—82<5 X (Ga, Ge)—2"> A(FGa,c).

[t is determined (set ¢ = a) by the image of 1 : a—a, which is exactly the
definition of the counit ¢,: FGa—a. But ¢ ! is an isomorphism, hence
this natural transformation is monic or epi, respectively, when every G, ,
Is injective or surjective, respectively; that is, when G is faithful or full,
respectively. The result now follows by the lemma.

A subcategory A of Bis called reflective in B when the inclusion functor
K:A— B has a left adjoint F: B— A. This functor F may be called a
reflector and the adjunction (F, K, ¢) = (F, ¢> : B— A a reflection of B
in its subcategory A. Since the inclusion functor K is always faithful,
the counit ¢ of a reflection is always epi. A reflection can be described in
terms of the composite functor R = K F : B— B;indeed, A C B is reflective
in Bifand only if there is a functor R : B— B with values in the subcategory
A and a bijection of sets

A(Rb, a)= B(b, a)

natural in be B and ac A. A reflection may be described in terms of
universal arrows: A C B is reflective if and only if to each b e B there is
an object Rb of the subcategory A and an arrow g, : b— Rb such that
every arrow g:b—ae A has the form g= fon, for a unique arrow
J:Rb—a of A. As usual, R is then (the object function of) a functor
B— B (with values in A).

If a full subcategory A C B is reflective in B, then by Theorem 1 each
object a e A is isomorphic to F K a, and hence Ra= a for all a.

Dually, A CB is coreflective in B when the inclusion functor A —B
has a right adjoint. (Warning: Mitchell [1965] has interchanged the
meanings of “reflection” and “coreflection”.)
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Here are some examples. Ab is reflective in Grp. For, if
G/[G, G] is the usual factor-commutator group of a group G, then
hom(G/[G, G], A)= hom(G, A) for A abelian, and Ab is full in Grp.
Or consider the category of all metric spaces X, with arrows uniformly
continuous functions. The (full) subcategory of complete metric spaces
is reflective; the reflector sends each metric space to its completion.
Again, consider the category of all completely regular Hausdorff spaces
(with arrows all continuous functions). The (full) subcategory of all
compact Hausdorff spaces is reflective ; the reflector sends each completely
regular space to its Stone-Cech compactification.

A coreflective subcategory of Ab is the full subcategory of all torsion
abelian groups (a group is torsion if all elements have finite order);
the coreflector sends each abelian group A to the subgroup T A of all
elements of finite order in A.

Exercises

l. Show that the table of dual statements (§ I1.1) extends as follows:

Srarement Dual statement

S, T: C— B are functors S. T: C— B are functors
T is full T is full

T 1s faithful T is faithful

i : 8= Tis a natural transformation.  »: T->$ is a natural transformation.
(F,G,¢): X—Ais an adjunction {G,F,¢~'>: A— X is an adjunction
# is the unit of <F. G. ¢>. 1 is the counit of (G, F. ¢ '>.

2. Show that the torsion-free abelian groups form a full reflective subcategory of Ab.

3. I0{G,F,@>: X—A is an adjunction with G full and every unit 17, a monic,
then every y is also epi.

4. Show the following subcategories to be reflective:
(a) The full subcategory ofall partial orders in the category Preord of all preorders,

with arrows all monotone functions.

{b) The full subcategory of T-spaces in Top.

5. Given an adjunction {(F, G, @) : X — A, prove that G is faithful if and onlyife™!
carries epis to epis.

6. Given an adjunction (F, G, 1, > with either F or G full, provethat G:: GFG—G
is invertible with inverse nG: G—GFG.

7.1 A is a full and reflective subcategory of B, prove that every functor S:J—A4
with a limit in B has a limit in A.

4. Equivalence of Categories
A functor §: A—C is an isomorphism of categories when there is a

functor T:C — 4 (backwards) such that ST =7:C — C and
T'S=1:4— A. In this case, the identity natural transformations
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n:1-ST and &: TS > I make (T,S;n,e>: C — A an adjunction.
In other words, a two-sided inverse T of a functor S is a left-adjoint
of § - and for that matter, T is also a right-adjoint of S.

There is a more general (and more useful) notion:

A functor §: A— C is an equivalence of categories (and the categories
A and C are equivalent) when there is a functor T: C— 4 (backwards)
and natural isomorphisms ST=7:C — C and TS=~I: A — A. In this
case T:C-—A is also an equivalence of categories. We shall soon see
that T is then both a left adjoint and a right adjoint of S,

Here is an example. In any category C a skeleton of C is any full
subcategory A such that each object of C is isomorphic (in C) to exactly
one object of 4. Then A is equivalent to C and the inclusion K : A—C is
an equivalence of categories. For, select to each c e C an isomorphism
.: ¢ = Tc with Tcan object of A. Then we can make Ta functor T: C— A
in exactly one way so that 6 will become a natural isomorphism 6: I~ K T.
Moreover T K = I, so K is indeed an equivalence: A category is equivalent
to (any one of ) its skeletons. For example, the category of all finite sets
has as a skeleton the full subcategory with objects all finite ordinal
numbers 0, 1, 2, ..., n, .... (Here 0 is the empty set and each
n=1{0,1,...,n—1})

A category is called skeletal when any two isomorphic objects are
identical; 1.e., when the category is its own skeleton.

Anadjoint equivalence of categoriesisanadjunction{(T, S; n,¢>: C— A
in which both the unit #:I-S T and the counit ¢: TS--1 are natural
isomorphisms: I=~S7T, TS=1I. Then 4! and ¢ ! are also natural
isomorphisms, and the triangular identities ¢T-Typ=1, Se-nS=1
can be written as Tn~'+¢™'T=1,n"'S+Se ! = 1, respectively. These
identities then state that ¢S, T,¢™',n"'>: 4—C is an adjunction with
e ':I1->TS as unit and n~':ST->1 as counit. Thus in an adjoint
equivalence (T,S, —, —) the functor T: C—A4 is the left adjoint of
§:A—C with unit n and at the same time T is the right adjoint of S,
with unit ¢!,

We can now state the main facts about equivalence.

Theorem 1. The following properties of a functor S: A—C are
logically equivalent:

(i) S is an equivalence of categories,
(ii) S is part of an adjoint equivalence {T,S;n,¢>: C — A,
(i1) S is full and faithful, and each object ¢ € C is isomorphic to Sa for
some object a € A.

Proof. Trivially, (ii) implies (i). To prove that (i) implies (iii), note
that § T2 I shows that each ce C has the form ¢~ S(T ¢) forana=T ce A.
The natural isomorphism 6: TS =~ I gives for each f:a—a’' the com-
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mutative square

TSa—tq

ro| |

TS a/—T—) a.

Hence f=0,-TSf-0;"; it follows that S is faithful. Symmetrically,
STx=I proves T faithful. To show § full, consider any h:Sa—Sda’
and set f=6,-Tho6,;' Then the square above commutes also with
S f replaced by h, so TS f = Th. Since T is faithful, S f = h, which means
that S is full.

To prove that (iii} implies (ii) we must construct from S a (left) ad-
joint T. For each c e C we can choose some object a, = Tyce A and an
isomorphism 7, :

noc = S(T,o
h JSg. g:Tyce—a.
Sa

For every arrow f:c— Sa, the composite f-5,! has the form Sg for
some g because S is full; this g is unique because § is faithful. In other
words, f=Sg-n, for a unique g, so n, is universal from c to S. There-
fore T, can be made a functor T: C— A in exactly one way so that
n: IS T is natural, and then T is the left adjoint of § with unit the
isomorphism #. As with any adjunction, S¢,- n5,=1 (put c=Saq, f=1
in the diagram above). Thus S¢, = (15,) ! is invertible. Since § is full and
faithful, the counit ¢, is also invertible. Therefore (T, S;n,&>:C—A
is an adjoint equivalence, and the proof is complete.

In this proof, suppose that A is a full subcategory of C and that
S=K:A—C is the insertion. For objects ae A C C we can then choose
a,=a=Kua and ny, the identity. Then Ke,=1, hence ¢,=1 for all a.
This proves

Proposition 2. If A is a full subcategory of C and every ce C is iso-
morphic (in C) to some object of A, then the insertion K: A-—C is an
equivalence and is part of an adjoint equivalence {T,K:.n,1>:C—A
with counit the identity. Therefore A is reflective in C.

This includes in particular the case already noted, when 4 is a
skeleton of C.

A functor F : X — A is said to be a left-adjoint-left-inverse of G: A— X
when there is an adjunction {F, G; 5, 1> : X — A with counit the identity.
This means (Exercise 4) that G is an isomorphism of 4 to a reflective
subcategory of X. In the case of the Proposition 2 just above, we have
shown that the insertion A—C has a left-adjoint-left-inverse.
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Duality theorems in functional analysis are often instances of equiv-
alences. For example, let CAb be the category of compact topological
abelian groups, and let P assign to each such group G its character group
PG, consisting of all continuous homomorphisms G—R/Z. The
Pontrjagin duality theorem asserts that P: CAb— Ab°® is an equivalence
of categories. Similarly, the Gelfand-Naimark theorem states that the
functor C which assigns to each compact Hausdorff space X its abelian
C*-algebra of continuous complex-valued functions is an equivalence
of categories (see Negrepontis [19717).

Exercises

1. Prove: (a) Any two skeletons of a category C are isomorphic,

(b) If A, is a skeleton of 4 and C, a skeleton of C, then 4 and C are equivalent
if and only if Ay and C, are isomorphic.

2. (a) Prove: the composite of two equivalences D—C, C— A4 is an equivalence.
{b) State and prove the corresponding fact for adjoint equivalences.

3. If §: A—C is full, faithful, and surjective on objects (each ce C is ¢ =Sa for
some ae A), prove that there is an adjoint equivalence <T,S: 1, e):C—4
with unit the identity (and thence that T is a left-adjoint-right-inverse of §).

4. Given a functor G:A— X, prove the three following conditions logically
equivalent:

(a) G has a left-adjoint-left-inverse.

{b) G has a left adjoint, and is full, faithful, and injective on objects.

(c) There is a full reflective subcategory Y of X and an isomorphism H: AxY
such that G= K H, where K: Y— X is the insertion.

5. If J is a connected category and 4 : C— € has a left adjoint (colimit), show that
this left adjoint can be chosen to be a left-adjoint-left-inverse.

5. Adjoints for Preorders

Recall that a preorder P is a set P={p, p’, ...} equipped with a reflexive
and transitive binary relation p < p’, and that preorders may be regarded
as categories so that order-preserving functions become functors. An
order-reversing function L on P to Q is then a functor L:P— Qv

Theorem 1 (Galois connections are adjoint pairs). Let P, Q be two
preorders and L:P—Q°® R:Q°°—P two order-preserving Sunctions.
Then L (regarded as a functor) is a left adjoint to R if and only if, for all
pePand qe Q,

Lpzgq in Q ifandonlyif p<Rq in P. (N

W hen this is the case, there is exactly one adjunction ¢ making L the left
adjoint of R. For all pand q,p<RLp and LRq > q; hence also

Lp2LRLp2Lp, Rq=RLRq=Rq. @
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Proof. Recall that P becomes a category in which there is (exactly)
one arrow p—p' whenever p < p’. Thus the condition (1) states precisely
that there is a bijection homgoes(L p, q) = homp(p, Rq): since each hom-
set has at most one clement, this bijection is automatically natural.
The unit of the adjunction is the inequality p < R Lp for all p, while
the counitis L Rq = g forall . The two Eqs. (2) are the triangular identities
connecting unit and counit. In the convenient case when both P and Q
are posets (i.e, when both the relations £ are antisymmetric) these
conditions become L= LR L, and R = R LR (each three passages reduce
to one!).

A pair of order-preserving functions L and R which satisfy (1) is
called a Galois connection from P to Q. Here is the fundamental example,
for a group G acting on a set U, by {g,x)+>0c-x for 6eG, xeU.
Take P =2(U), the set of all subsets X C U, ordered by inclusion, while
0 =2(G) is the set of subsets S C G also ordered by inclusion (S8’ if
andonly if SCS). Let LX={o|xe X impliesg*x=x}, RS={x|oeS§
implies ¢ * x = x}; in other words, L X is the subgroup of G which fixes
all points x € X and RS is the set of fixed points of the automorphisms
of $. Then LX=2SinQ ifand onlyifo-x=xforalloeSandall xe X,
which in turn holds if and only if X <R S in P. Therefore, L and R form
an adjoint pair (a Galois connection). The original instance is that with
G a group of automorphisms of a field U, as in the classical Galois theory.

If U and V are sets, the set (U} of all subsets of U is a preorder
under inclusion. For each function f: U— V the direct image f,, defined
by f.(X)={f(x)|xe X} is an order-preserving function and hence a
functor f, : 2(U)—2(V). The inverse image f*(Y)={x|fx=y for
some y € Y} defines a functor f*: 2(V)— 2(U) in the opposite direction.
Since f, X CY if and only if X C f*Y, the direct image functor f, is
left adjoint to the inverse image functor f*.

Certain adjoints for Boolean algebras are closely related to the basic
connectives in logic. We again regard 2(U) as a preorder, and hence as a
category. The diagonal functor 4 : Z(U)—P(U) x 2(U) has (as we have
already noted) a right adjoint n, sending subsets X, Y to their inter-
section XY, and a left adjoint U, with (X, Y>> XU, the union.
If X is a fixed subset of U, then intersection with X is a functor
Xn—:PUy—2U). Since XnY<Z if and only if Y £ X' UZ, where
X' is the complement of X in U, the right adjoint of X — is X'u —.
Thus the construction of suitable adjoints yields the Boolean operations
N, U, and ' corresponding to ~and”, “or”, and "not”. Now consider
the first projection P: U x V—U from the product of two sets U and V.
Each subset SCU xV defines two corresponding subsets of U by

P.S={x]3y,yeV and <(x,y>eS},
P,S={x|Vy,yeV  implies {x,y>eS}:
they arise from (x,y) €S by applying the existential quantifier 3y,
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“there exists a y”” and the universal quantifier ¥ », “for all y”, respectively

to {x,y> € S. Also P, S is the direct image of S under the projection P.
Now for all subsets X = U one has

SEP*X=P,S<X; P*X<S<X<P,S,

where “” means “if and only if”. These state that P*, which is the in-
verse image operation, has both a left adjoint P, and a right adjoint P,.
In this sense, both quantifiers 3 and V can be interpreted as adjoints.

There is also a geometric interpretation: P*X is the cylinder
X xVCU xV over the base X CU, P, S is the projection of SC U x ¥ on
the base U, and P, S is the largest subset X of U such that the cylinder on
X is wholly contained in S. This analysis has revealed several basic con-
cepts of logic (and, or, not, ¥y, 3 y) to be adjoints. This illustrates the
slogan ‘““adjoints are everywhere”.

Exercises

I. Let H be a space with an inner product (e.g., Hilbert space). If P = Q is the set
of all subsets S of H, ordered by inclusion, show that LS = RS = the orthogonal
complement of § gives a Galois connection.

2. In a Galois connection between posets, show that the subset {pip=RLp} of
P cquals {p|p = Rq for some ¢} and give a bijection from this set to the subset
{414 =LRq} of Q. What are these sets in the case of a group of automorphisms
of a field? Does this generalize to an arbitrary adjunction?

3. For C a category with pulibacks, each arrow f:a—a defines a functor
(Clf)y=f,:(Cla)—(Cla’) which carries each object x—a of (Cla) to the
composite x—a-—a’. Show that f has a right adjoint f* with S*(X'—a)=y—a,
where y is the vertex of the pullback of a—a' —x’.

6. Cartesian Closed Categories

Much of the force of category theory will be seen to reside in using
categories with specified additional structures. One basic example will
be the closed categories (§ VII. 7); at present we can define readily one
useful special case. “cartesian closed”.

To assert that a category C has all finite products and coproducts is to
assert that products, terminal, initial and coproducts exist, thus the func-
tors C — 1 and 4 : C — C x C have both left and right adjoints. Indeed,
the left adjoints give initial object and coproduct, respectively, while the
right adjoints give terminal object and product, respectively.

Using just adjoints we will now define “cartesian closed category”.
A category C with all finite products specifically given is called cartesian
closed when each of the following functors

C—1, C—-CxC, =%,

c—0, c—{c ¢y, a—axb,
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has a specified right adjoint (with a specified adjunction). These adjoint
are written as follows

1<-0. axhlu by, M.

Thus to specify the first is to specify a terminal object ¢ in C, and specifyin
the second is specifying for each pair of objects «. b e C a product objec
a x h together with its projections a<«—a x b—bh. These projection
determine the adjunction (they constitute the counit of the adjunction
as already noted, x is then a bifunctor. The third required adjoir
specifies for each functor — xb: C— C a right adjoint, with the corre
sponding bijection

hom(a x b, ¢) = hom(a. ¢")

natural in ¢ and in ¢. By the parameter theorem (to be proved in the nex
section), {b, ¢> " is then (the object function of) a bifunctor C*° x C—(
Specifying the adjunction amounts to specifying for each c and b an arrow

e " xb—c

which is natural in ¢ and universal from — x b to ¢. We call this e = ¢,
the evaluation map. It amounts to the ordinary evaluation {f,x>—fx o0
a function fat an argument x in both of the following cases:

Set is a cartesian closed category, with ¢® = hom(b, ¢).

Cat is cartesian closed, with exponent C# the functor category.

A closely related example of adjoints is the functor

— ®gB: K-Mod— K-Mod

which has a right adjoint homg (B, —): the adjunction is determined b
a counit homg (B, A) ®x B— A given by evaluation.

Exercises

[. (a) If U is any set, show that the preorder 2(U) of all subsets of U is a cartesia
closed category.

(b) Show that any Boolean algebra, regarded as a preorder, is cartesian closec

2. In some elementary theory T, consider the set S={p.q. ...} of sentences of *
as a preorder, with p <4 meaning “p entails ¢~ (i.e., g is a consequence of
on the basis of the axioms of T). Prove that § is a cartesian closed category
with product given by conjunction and exponential ¢” given by “p implies ¢

3. In any cartesian closed category, prove ¢ = ¢ and ®*" = ().

4. In any cartesian closed category obtain a natural transformation ¢ x b"—s¢
which agrees in Set with composition of functions. Prove it (like compositior
associative.

5. Show that A cartesian closed need not implv A’ cartesian closed.



