II1. Universals and Limits

Universal constructions appear throughout mathematics in various
guises — as universal arrows to a given functor, as universal arrows from
a given functor, or as universal elements of a set-valued functor. Each
universal determines a representation of a corresponding set-valued
functor as a hom-functor. Such representations, in turn, are analyzed
by the Yoneda Lemma. Limits are an important example of universals —
both the inverse limits (= projective limits = limits = left roots) and their
duals, the direct limits (= inductive limits = colimits = right roots). In
this chapter we define universals and limits and examine a few basic
types of limits (products, pullbacks, and equalizers ...). Deeper properties
will appear in Chapter IX on special limits, while the relation to adjoints
will be treated in Chapter V.

1. Universal Arrows

Given the forgetful functor U:Cat— Grph and a graph G, we have
constructed (§ I1.7) the free category C on G and the morphism P: G— U C
of graphs which embeds G in C, and we have shown that this arrow P
is “universal” from G to U. A similar universality property holds for the
morphisms embedding generators into free algebraic systems of other
types, such as groups or rings. Here is the general concept.

Definition. If S: D—C is a functor and ¢ an object of C, a universal
arrow fromc to S is a pair {r, u) consisting of an object r of D and an arrow
u:c—Sr of C, such that to every pair {d, f> with d an object of D and
f:c—Sdanarrow of C, there is aunique arrow f': r—d of D withS f'ou= f.
In other words, every arrow f to S factors uniquely through the universal
arrow u, as in the commutative diagram

c—4—Sr r
i s K (1)
c—f—+SVd, d.
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Equivalently, u: c— Sr is universal from ¢ to S when the pair <r, u)
is an initial object in the comma category (c | S), whose objects are the
arrows c— Sd. As with any initial object, it follows that {r, u) is unique
up to isomorphism in (c | S); in particular, the object r of D is unique
up to isomorphism in D. This remark is typical of the use of comma
categories.

This notion of a universal arrow has a great variety of examples;
we list a few:

Bases of Vector Spaces. Let Vet denote the category of all vector
spaces over a fixed field K, with arrows linear transformations, while
U : Vcty—Set is the forgetful functor, sending each vector space V to
the set of its elements. For any set X there is a familiar vector space Vy
with X as a set of basis vectors; it consists of all formal K-linear combina-
tions of the elements of X. The function which sends each xe X into
the same x regarded as a vector of Vy is an arrow j: X — U(Vy). For
any other vector space W, it is a fact that each function f: X —U(W)
can be extended to a unique linear transformation f':Vy— W with
U f'sj= f. This familiar fact states exactly that j is a universal arrow
from X to U.

Free Categories from Graphs. Theorem I1.7.1 for the free category C
on a graph G states exactly that the functor P: G — U C is universal.
The same observation applies to the free monoid on a given set of gen-
erators, the free group on a given set of generators, the free R-module
(over a given ring R) on a given set of generators, the polynomial algebra
over a given commutative ring in a given set of generators, and so on in
many cases of free algebraic systems.

Fields of Quotients. To any integral domain D a familiar construction
gives a field Q(D) of quotients of D together with a monomorphism
j: D—Q(D)(which is often formulated by making D a subdomain of Q(D)).
This field of quotients is usually described as the smallest field containing
D, in the sense that for each D C K with K a field there is a monomorphism
f: Q(D)— K of fields which is the identity on the common subdomain D.
However, this inclusion D C K may readily be replaced by any mono-
morphism D— K of domains. Hence our statement means that the pair
{Q(D),j> is universal for the forgetful functor Fld— Dom,, from the
category of fields to that of domains — provided we take arrows of
Dom,, to be the monomorphisms of integral domains (note that a homo-
morphism of fields is necessarily a monomorphism). However, for the
larger category Dom with arrows all homomorphisms of integral domains
there does not exist a universal arrow from each domain to a field. For
instance, for the domain Z of integers there is for each prime p a homo-
morphism Z — Z,; the reader should observe that this makes impossible
the construction of a universal arrow from Z to the functor Fld — Dom.

Complete Metric Spaces. Let Met be the category of all metric spaces
X, Y,..., with arrows X — Y those functions which preserve the metric
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(and which therefore are necessarily injections). The complete metric
spaces form (the objects of) a full subcategory. The familiar completion
X of a metric space X provides an arrow X — X which is universal for
the evident forgetful functor (from complete metric spaces to metric
spaces).

In many other cases, the function embedding a mathematical object
in a suitably completed object can be interpreted as a universal arrow.
The general fact of the uniqueness of the universal arrow implies the
uniqueness of the completed object, up to a unique isomorphism (who
wants more?).

The idea of universality is sometimes expressed in terms of “universal
elements”. If D is a category and H : D—Set a functor, a universal element
of the functor H isa pair {r, ) consisting of an object r € D and an element
e€ Hr such that for every pair (d,x) with xe Hd there is a unique
arrow f:r—d of D with (H f)e= x.

Many familiar constructions are naturally examples of universal
elements. For instance, consider an equivalence relation E on a set S,
the corresponding quotient set S/E consisting of the equivalence classes
of elements of S under E, and the projection p : S— S/E which sends each
s€ S to its E-equivalence class. Now S/E has the familiar property that
any function f on S which respects the equivalence relation can be re-
garded as a function on S/E. More formally, this means that if f: S— X
has fs= fs" whenever sEs, then f can be written as a composite f = f'p
for a unique function f': S/E— X:

S—L S/E

1 N
s—1 . x.

This states exactly that (S/E, p> is a universal element for that functor
H :Set—Set which assigns to each set X the set H X of all those functions
f:S— X for which sEs implies fs= fs.

Again, let N be a normal subgroup of a group G. The usual projection
p: G—G/N which sends each g € G to its coset pg=g N in the quotient
group G/N is a universal element for that functor H : Grp—Set which
assigns to each group G’ the set H G’ of all those homomorphisms f: G— G’
which kill N (have fN =1). Indeed, every such homomorphism factors
as = f'p, for a unique f’": G/N— G'. Now the quotient group is usually
described as a group whose elements are cosets. However, once the cosets
are used to prove this one “universal” property of p: G— G/N, all other
properties of quotient groups — for example, the isomorphism theorems —
can be proved with no further mention of cosets (see Mac Lane-Birk-
hoff [1967]). All that is needed is the existence of a universal element
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p of the functor H. For that matter, even this existence could be proved
without using cosets (see the adjoint functor theorem stated in §V.6).

Tensor products provide another example of universal elements.
Given two vector spaces V and ¥’ over the field K, the function H which
assigns to each vector space W the set HW = Bilin(V, V'; W) of all bi-
linear functions ¥V x V'— W is the object function of a functor
H : Vect,—Set, and the usual construction of the tensor product provides
both a vector space V® V' and a bilinear function @ : VxV'—-V® V",
usually written {v, v'>>v& v/, so that the pair (V® V', ® ) is a universal
element for the functor H = Bilin(V, V’; ). This applies equally well
when the field K is replaced by a commutative ring (and vector spaces
by K-modules).

The notion “universal element” is a special case of the notion “universal
arrow”. Indeed, if * is the set with one point, then any element e Hr
can be regarded as an arrow e: * — Hr in Ens. Thus a universal element
{r,e) for H is exactly a universal arrow from * to H. Conversely, if C
has small hom-sets, the notion “universal arrow” is a special case of the
notion “universal element”. Indeed, if S: D—C is a functor and ce C
is an object, then {r,u:c— Sr) is a universal arrow from ¢ to S if and
only if the pair (r,ue C(c, Sr)) is a universal element of the functor
H=C{c,S —). This is the functor which acts on objects d and arrows
h of D by

d—C(c,Sd), h—Clc,Sh).

Hitherto we have treated universal arrows from an object ce C
to a functor S: D— C. The dual concept is also useful. A universal arrow
from S to ¢ is a pair {r, v> consisting of an object re D and an arrow
v: Sr—c with codomain c such that to every pair {d, /) with f:Sd—c¢
there is a unique f': d—r with f = v Sf’, as in the commutative diagram

d Sd—L ¢
s sf I

i H

r, Sr—Y—c.

The projections p:axb—a, g:axb—b of a product in C (for
C = Grp, Set, Cat, ...) are examples of such a universal. Indeed, given
any other pair of arrows f:c—a, g:c—b to a and b, there is a unique
h:c—axb with ph= f,qh=g. Therefore {p,q) is a “universal pair”.
To make it a universal arrow, introduce the diagonal functor
A:C—-CxC, with dc={c,c). Then the pair f,g above becomes an
arrow { f,¢g>: 4dc—<a,b> in Cx C, and {p, g is a universal arrow from
4 to the object {a, b).
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Similarly, the kernel of a homomorphism (in Ab, Grp, Rng, R-Mad, ...)
is a universal, more exactly, a universal for a suitable contravariant
functor.

Note that we say “universal arrow to $” and “universal arrow from §”
rather than “universal” and “couniversal”.

Exercises

1. Show how each of the following familiar constructions can be interpreted as a
universal arrow:
(a) The integral group ring of a group (better, of a monoid).
(b) The tensor algebra of a vector space.
(c) The exterior algebra of a vector space.
2. Find a universal element for the contravariant power set functor 2 : Set°?—»Set.
3. Find (from any given object) universal arrows to the following forgetful functors:
Ab— Grp, Rng— Ab (forget the multiplication), Top— Set, Set, — Set.
4. Use only universality (of projections) to prove the following isomorphisms of
group theory:
(a) For normal subgroups M, N of G with MCN, (G/M)/(N/M)=G/M.
(b) For subgroups S and N of G, N normal, with join SN, SN/N =S/SAN.
5. Show that the quotient K-module A/S (S a submodule of A) has a description by
universality. Derive isomorphism theorems.
6. Describe quotients of a ring by a two-sided ideal by universality.
7. Show that the construction of the polynomial ring K[x] in an indeterminate x
over a commutative ring K is a universal construction.

2. The Yoneda Lemma

Next we consider some conceptual properties of universality. First,
universality can be formulated with hom-sets, as follows:

Proposition 1. For a functor S : D— C a pair {r,u:c—Sr) is universal
from ¢ to S if and only if the function sending each f':r—d into
Sf’ou:c—S8d is a bijection of hom-sets

D(r,d)y=C(c,Sd). (1)

This bijection is natural in d. Conversely, given r and ¢, any natural iso-
morphism (1) is determined in this way by a unique arrow u:c— Sr such
that {r,u) is universal from c to S.

Proof. The statement that {r, u) is universal is exactly the statement
that f'—Sf’-u=f is a bijection. This bijection is natural in d, for if
g :d—d, then S(g' f)ou=Sg'~(Sf'>u)

Conversely, a natural isomorphism (1) gives for each object d of D
a bijection ¢, : D(r, d)— C{c, Sd). In particular, choose the object d to be r;
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the identity 1, € D(r, r) then goes by ¢, to an arrow u:c—Srin C. For
any f':r—d the diagram

D(r,r)—2—C(c,Sr)

D(r.f’)l JC(c.Sf’) (2)
D(r, d)—*4—C(c, Sd)

commutes because ¢ is natural. But in this diagram, 1, € D(r, r) is mapped
(top and right) to S f'> u and (left and bottom) to ¢,(f’). Since ¢, is a bi-
jection, this states precisely that each f:c—Sd has the form f=Sf'-u
for a unique f'. This is precisely the statement that {r, u) is universal.

If C and D have small hom-sets, this result (1) states that the functor
C(c,S —) to Set is naturally isomorphic to a covariant hom-functor
D(r, —). Such isomorphisms are called representations:

Definition. Let D have small hom-sets. A representation of a functor
K : D—Set is a pair {r, ), with r an object of D and

p:D(r, -)=K (3

a natural isomorphism. The object r is called the representing object.
The functor K is said to be representable when such a representation exists.

Up to isomorphism, a representable functor is thus just a covariant
hom-functor D(r, —). This notion can be related to universal arrows as
follows.

Proposition 2. Let * denote any one-point set and let D have small
hom-sets. If {r,u:x—Kr)> is a universal arrow from * to K :D—Set,
then the function y which for each object d of D sends the arrow f’: r—d
to K(f'){ux) € Kd is a representation of K. Every representation of K is
obtained in this way from exactly one such universal arrow.

Proof. For any set X, a function f: *— X from the one-point set *
to X is determined by the element f(x) € X. This correspondence f- f(*)
is a bijection Set(*, X)-= X, natural in X e Set. Composing with K yields
a natural isomorphism Set(*, K —)-> K. This plus the representation v
of (3) gives
Set(x, K —)= K= D(r, —).

Therefore a representation of K amounts to a natural isomorphism
Set(*, K —) = D(r, —). The proposition thus follows from the previous
one.

A direct proof is equally easy: Given the universal arrow u, the
correspondence f'+ K(f’) (u(*)) is a representation; given a representa-
tion y as in (3), y, maps 1 : r—r to an element of Kr, which is a universal
element, hence also a universal arrow *— Kr.
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Observe that each of the notions “universal arrow”, “universal
element”, and “representable functor” subsumes the other two. Thus, a
universal arrow from ¢ to §: D— C amounts (Proposition 1) to a natural
isomorphism D(r,d)= C(c, Sd) and hence to a representation of the
functor C(c,S —): D-—Set or equally well to a universal element for
the same functor.

The argument for Proposition 1 rested on the observation that each
natural transformation ¢ : D(r, — ) K is completely determined by the
image under ¢, of the identity 1 : r—r. This fact may be stated as follows:

Lemma ( Yoneda). If K : D — Set is a functor from D and r an object
in D ( for D a category with small hom-sets), there is a bijection

y:Nat(D(r, =), K)= Kr 4)

which sends each natural transformation o:D(r, —)-K to a,l,, the
image of the identity r—r.

The proof is indicated by the following commutative diagram:

D(r,r) —=——K(r) r
I AD(r.f)l lx(f) Jf )
D(r,d)—*—K(d), d.

Corollary. For objects r, se D, each natural transformation
D(r, =) D(s, —) has the form D(h, —) for a unique arrow h:s—r.

The Yoneda map y of (4) is natural in K and r. To state this fact
formally, we must consider K as an object in the functor category Set®,
regard both domain and codomain of the map y as functors of the pair
(K, r>, and consider this pair as an object in the category Set® x D. The
codomain for y is then the evaluation functor E, which maps each pair
(K, r> to the value Kr of the functor K at the object r; the domain is
the functor N which maps the object <K, r) to the set Nat(D(r, —), K)
of all natural transformations and which maps a pair of arrows F : K— K,
f:r—7¥ to Nat(D(f, —), F). With these observations we may at once
prove an addendum to the Yoneda Lemma:

Lemma. The bijection of (4) is a natural isomorphism y : N= E between
the functors E, N : Set® x D—Set.

The object function r+—>D(r, —) and the arrow function
(f:s—r—D(f, —): D(r, =)= D(s, )

for fan arrow of D together define a full and faithful functor

Y: D°"— Set” (6)
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called the Yoneda functor. Its dual is another such functor
Y': D—Set®” 7
(also faithful) which sends f: s—r to the natural transformation
D(—, f): D(—,s)=»D(—,r): D°°—Set.

D must have small hom-sets if these functors are to be defined (because
Set is the category of all small sets). For larger D, the Yoneda lemmas
remain valid if Set is replaced by any category Ens whose objects are sets
X, Y, ..., and for which Ens(X, Y) is the set of all functions from X to Y,
provided of course that D has hom-sets which are objects in Ens. (The
meaning of naturality is not altered by further enlargement of Ens;
see Exercise 4.)

Exercises

1. Let functors K, K': D-—Set have representations {r, p) and {r’, ), respectively.
Prove that to each natural transformation t : K-> K’, there is a unique morphism
h:r'—r of D such that

T°W=‘P/°D(hy _):D(r’ _)_"’KI

2. State the dual of the Yoneda Lemma (D replaced by D°P).

3. (Kan; the coyoneda lemma.) For K : D — Set, (* | K) is the category of ele-
ments x€ Kd, @: (| K) — D is the projection x € Kd +— d and for each
aeD, a: (x| K)—D is the diagonal functor sending everything to the constant
value a. Establish a natural isomorphism

Nat(K, D(a, —))= Nat(a, Q).

4. (Naturality is not changed by enlarging the codomain category.) Let E be a full
subcategory of E'. For functors K, L: D—E, with J : E— E' the inclusion, prove
that Nat(K, L)= Nat(J K, J L).

3. Coproducts and Colimits

We introduce colimits by a variety of special cases, each of which is a
universal.

Coproducts. For any category C, the diagonal functor 4: C—CxC
is defined on objects by A(c)={c,c), on arrows by A(f)=<{f, /.
A universal arrow from an object (a,b> of CxC to the functor 4 is
called a coproduct diagram. It consists of an object ¢ of C and an arrow
{a,b)—<c,c)> of CxC; that is, a pair of arrows i:a—vc, j: b—c from
a and b to a common codomain c. This pair has the familiar universal
property: For any pair of arrows f:a—d, g:b—d there is a unique
h:c— dwithf =hoi, g = hoj. When such a coproduct diagram exists,
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the object ¢ is necessarily unique (up to isomorphism in C); it is written
¢=allbor c=a+b and is called a coproduct object. The coproduct
diagram then is

a——allb—-b;

the arrows i and j are called the injections of the coproduct a LI b (though
they are not required to be injective as functions). The universality of this
diagram states that any diagram of the following form can be filled in
uniquely (at h) so as to be commutative:

Hence the assignment < f, g>~h is a bijection
Cla,dyx C(b,d)y=C(all b, d) (2)

natural in d, with inverse h—> (hi, hj>. If every pair of objects a,b in C
has a coproduct then, choosing a coproduct diagram for each pair, the
coproduct II: Cx C—C is a bifunctor, with h L1 k defined for arrows
h:a—a, k:b—b as the unique arrow hllk:allb—a 11b with
(hU kyi=ih, (h1Lk)j=jk (draw the diagram!).

The diagram (1) is more familiar in other guises. For example, in
Set take a L1 b to be a disjoint union of the sets a and b (i.e,, a union of
disjoint copies of a and b), while i and j are the inclusion maps aCa Ll b,
bCall b. Now a function h on a disjoint union is uniquely determined
by independently giving its values on a and on b; ie., by giving the
composites hi and hj. This says exactly that diagram (1) can be filled
in uniquely at h. To be sure, a disjoint union is not unique, but it is unique
up to a bijection, as befits a universal.

The coproduct of any two objects exists in many of the familiar cate-
gories, where it has a variety of names as indicated in the following list:

Set disjoint union of sets,

Top disjoint union of spaces,

Top, wedge product (join two spaces at the base points),
Ab, R-Mod direct sum A@ B,

Grp free product,

CRng tensor product R®S .

In a preorder P, a least upper bound aub of two elements a and b,
if it exists, is an element aub with the properties (i) a<aub, b<aub;
and (ii) if a<c and b =c, then aub<c. These properties state exactly
that aub is a coproduct of a and b in P, regarded as a category.
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Infinite Coproducts. In the description of the coproduct, replace
C x C =C? by C¥ for any set X. Here the set X is regarded as a discrete
category, so the functor category C* has as its objects the X-indexed
families a={a.| xe X} of objects of C. The corresponding diagonal
functor 4:C—C* sends each ¢ to the constant family (all ¢, =c). A
universal arrow from a to 4 is an X-fold coproduct diagram; it consists
of a coproduct object LI a,e C and arrows (coproduct injections)
i.:a,—1 a, of C with the requisite universal property. This universal
property states that the assignment f—{fi |xe X} is a bijection
C(U.a,, )= [] C(a,, o), 3)
xeX

natural in c. In Set, a coproduct is an X-fold disjoint union.
Copowers. If the factors in a coproduct are all equal (a, =b for all x),
the coproduct LI b is called a copower and is written X - b, so that

C(X +b,c)=C(b,c)*, 4

natural in c¢. For example, in Set, with b=Y a set, the copower
X - Y= X x Yis the cartesian product of the sets X and Y.

Cokernels. Suppose that C has a null object z, so that for any two
objects b,ce C there is a zero arrow 0:b-»>z—c. The cokernel of
fra—bisthen an arrow u:b-—esuchthat(Yuf=0:a—e; (i) ifh: b—c
has hf =0, then h=hu for a unique arrow h':e—c. The picture is

a—Lsb—se uf=0,
OB 5)
v
¢, hf=0.
In Ab, the cokernel of f: A— B is the projection B— B/f A4 to a quotient
group of B, and in many other such categories a cokernel is essentially a
suitable quotient object. However, in categories without a null object
cokernels are not available. Hence we consider more generally certain
“coequalizers”.

Coequalizers. Given in C a pair f,g:a—b of arrows with the same
domain a and the same codomain b, a coequalizer of {f, g> is an arrow
u:b—e(or,apair (e, up)such that () uf =ug; (i) if h: b—c has hf = hyg,
then h="Hhu for a unique arrow h':e—c. The picture is

a—g—ibLnl? uf =ug,
DN L (6)
i
¢, hf=hg.

A coequalizer u can be interpreted as a universal arrow as follows.
Let || denote the category which has precisely two objects and two
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non-identity arrows from the first object to the second ; thus the category is
=3+ Form the functor category C*. An object in C" is then a functor
from - =3+ to C; that is, a pair {f,g)>:a—b of parallel arrows a=3b
in C. An arrow in C" from one such pair <f, g} to another {f', g’ is
a natural transformation between the corresponding functors; this
means that it is a pair (h, k) of arrows h:a—a' and k:b— b in C

a===b  kg=g'h,

hJ }'k

' f’

d=—"=b', kf=f'h,
g

which make the f-square and the g-square commute. There is also a
diagonal functor 4:C— C*, defined on objects ¢ and arrows r of C as

1
c cT—3c¢
1
ll‘ > lvr l"
" /._ql_> N
C C 3¢’

insymbols, 4¢ = (1., 1> and Ar = {r, r). Now given the pair { f, g> : a—b,
an arrow h:b—c with hf=hg is the same thing as an arrow
Chf=hg,hy:{f.g>—{1, 1. in the functor category C**:

a——3b

g
hfl lh hf=hg.
1

(=

In other words, the arrows h which “coequalize” f and g are the arrows
from {f,g> to A. Therefore a coequalizer (e, u) of the pair {f,g» 15
just a universal arrow from {f, g} to the functor 4.

Coequalizers of any set of maps from a to b are defined in the same way.

In Ab, the coequalizer of two homomorphisms f,g:A—B is the
projection B— B/(f —g)A on a quotient group of B (by the image of
the difference homomorphism). In Set, the coequalizer of two functions
f,g: X— Y is the projection p: Y— Y/E on the quotient set of Y by the
least equivalence relation ECY x Y which contains all pairs {fx,gx)»
for xe X. The same construction, using the quotient topology, gives
coequalizers in Top.

Pushouts. Given in C a pair f: a—b, g : a—c of arrows with a common
domain a, a pushout of { f,g) is a commutative square, such as that on
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the left below

a—7L b a—L b
lg lu P lh (7
c—2sr, c—* 5,

such that to every other commutative square (right above) built on f, g
there is a unique t:r—s with tu=h and tv=k. In other words, the
pushout is the universal way of filling out a commutative square on the
sides f,g. It may be interpreted as a universal arrow. Let ««—-—-
denote the category which looks just like that. An object in the functor
category C'“ '~ is then a pair of arrows {f,¢> in C with a common
domain, while 4(c) = {1,, 1) is the object function of an evident “diagonal”
functor 4: C—C* ~. A commutative square hf =kg as on the right
above can then be read as an arrow

fog he—L-a—y"sc
hl lhf=ky lk
A(S) S ¢——p-—8§—T—§

in C™"~ from {f,g> to A4s, The pushout is a universal such arrow.
[ts vertex r, which is uniquely determined up to (a unique) isomorphism, is
often written as a coproduct “over a”

r=bll,c=bll, ,c,

and called a “fibered sum” or (the vertex of} a “cocartesian square”.
In Set, the pushout of  f, g> always exists; it is the disjoint union bl ¢
with theelements f x and g x identified for each x € a. A similar construction
gives pushouts in Top — they include such useful constructions as ad-
junction spaces. Pushouts exist in Grp; in particular, if f and g above
are monic in Grp, the arrows u and v of the pushout square are also monic,
and the vertex r is called the “amalgamated product” of b with c.

Cokernel Pair. Given an arrow f:a—b in C, the pushout of f with
£ is called the cokernel pair of f. Thus the cokernel pair of f consists of an
object r and a parallel pair of arrows u, v : b—r, with domain b, such that
uf=vf and such that to any parallel pair h,k:b—s with hf=kf
there is a unique t:r—s with tu=h and tv=k:

S

4L b="mr, uf=of,

Y

s, hf=kf.
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Colimits. The preceding cases all deal with particular functor categories
and have the following pattern. Let C and J be categories (J for index
category, usually small and often finite). The diagonal functor

4:C—C’

sends each object ¢ to the constant functor Ac — the functor which has
the value ¢ at each object ieJ and the value 1, at each arrow of J. If
f:c—c is an arrow of C, 4 f is the natural transformation 4 f: Ac—=A¢’
which has the same value f at each object i of J. Each functor F: J—C
is an object of C’. A universal arrow {r, u) from F to A4 is called a colimit
(a-direct limit” or “inductive limit™) diagram for the functor F. It consists
of an object r of C, usually written rin_rp}F or r = Colim F, together

with a natural transformation u:F->Ar which is universal among
natural transformations 1:F->Ac¢. Since Ac is the constant functor,
the natural transformation t consists of arrows t;: F;—c of C, one for
each object i of J, with t; Fu =1, for each arrow u:i—j of J. Pictorially,
all the squaresin the following schematic diagram (for a special choice of J)

Fe———F,— F,—=F,«——F
C

= ¢ = ¢ = ¢ = ¢

must commute. [t is convenient to visualize these diagrams with all the
~bottom” objects identified. For this reason, a natural transformation
1: F= Ac, often written as 7: F=sc, omitting 4, is called a cone from the
base F to the vertex ¢, as in the figure

F,.—F“—>FJ-—F”—>Fk

SLA

C

(all triangles commutative). In this language, a colimit of F:J—C
consists of an object I;ir_r}FeC and a cone p:FA»A(Li_r_rEF) from the

base F to the vertex Lim F which is universal: For any cone t: F=4c¢

from the base F there is a unique arrow t': Lim F—c¢ with 7,=1", for
every index i € J. We call u the limiting cone or the universal cone (from F).

For example, let J = @ = {0—1-—-2—3—---} and consider a functor
F : o—Set which maps every arrow of @ to an inclusion (subset in set).
Such a functor F is simply a nested sequence of sets F, CF, CF,C ---.
The union U of all sets F,, with the cone given by the inclusion maps
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F,— U, is LimF. The same interpretation of unions as special colimits
—>

applies in Grp, Ab, and other familiar categories. The reader may wish to
convince himself now of what we shall soon prove (Exercise V.1.8): For J
small, any F : J — Set has a colimit.

Exercises

1. In the category of commutative rings, show that R—>R®S«S, with maps
r—r®1, 1®s<s, is a coproduct diagram.

2. If a category has (binary) coproducts and coequalizers, prove that it also has
pushouts. Apply to Set, Grp, and Top.

3. In the category Matry of § 1.2, describe the coequalizer of two mxn matrices
A, B (i.e., of two arrows n—m in Matrg).

4. Describe coproducts (and show that they exist) in Cat, in Mon, and in Grph.

5. If E is an equivalence relation on a set X, show that the usual set X/E of equiv-
alence classes can be described by a coequalizer in Set.

6. Show that a and b have a coproduct in C if and only if the following functor
is representable: C(a, —)x C(b, —): C--Set, by c—C(a, ¢) x C(b, ).

7. (Every abelian group is a colimit of its finitely generated subgroups.) If 4 is an
abelian group, and J, the preorder with objects all finitely generated subgroups
SC A ordered by inclusion, show that A is the colimit of the evident functor
J,— Ab. Generalize.

4. Products and Limits

The limit notion is dual to that of a colimit. Given categories C, J,
and the diagonal functor 4:C—C’, a limit for a functor F:J—C
is a universal arrow {r,v)> from 4 to F. It consists of an object r of C,
usually written r=‘Li_mF or LimF and called the limit object {the

“inverse limit” or “projective limit™) of the functor F, together with a
natural transformation v:Ar-—F which is universal among natural
transformations t: dc-F, for objects ¢ of C. Since Ac:J—C is the
functor constantly ¢, this natural transformation t consists of One arrow

:¢—F, of C for each object i of J such that for every arrow u:i—j
ofJ one has 1;=Fu- t;, We may call 7:c=>F a cone to the base F from
the vertex c. (We say “cone to the base F” rather than “cocone”). The
universal property of v is this: It is a cone to the base F from the vertex
<L_i_n_lF; for any cone t to F from an object ¢, there is a unique arrow

r: c—»I:i_rEF such that 7, = v;t for all i. The situation may be pictured as
¢—'—LimF=LimF,
J r\\V. P —j

K

F—si— F

v = limiting cone,
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cach cone is represented by a commuting triangle (just one of many),
with vertex up; there is a unique arrow t which makes all the added
(vertex down) triangles commute. As with any universal, the object
Lim F and its limiting cone v: LimF— F are determined uniquely by the
— —
functor F, up to isomorphism in C.

The properties of Lim and Lim are summarized in the diagram

LimF =LimF——F—%1imF =ColimF
“ -
| h : (0
¢ F c,

T a

where the horizontal arrows are cones, the vertical arrows are arrows in C.
When the limits exist, there are natural isomorphisms

C(c, Ei_n}F) =~ Nat(dc, F) = Cone(c, F), (2)
Cone(F,¢)= Nat(F, A¢) = C(L_igF, o). (3)

There are familiar names for various special limits, dual to those for
colimits:

Products. If J is the discrete category {1,2}, a functor F : {1, 2} —» C
is a pair of objects {a, by of C. The limit object is called a product of a
and b, and is written a x b or aIl b; the limit diagram consists of ax b
and two arrows p, g (or sometimes pr, pr,),

ad-axb-SHb,

called the projections of the product. They constitute a cone from the ver-
tex a x b, so by the definition above of a limit, there is a bijection of sets

C(c,ax b)=C(c,a)x Clc, b) 4

natural in ¢, which sends each h:c—axb to the pair of composites
{ph,qh)>. Conversely, given arrows f:c—a and g:c—b, there is a
unique h:c—axb with ph=f and gh =g. We write

h=(f,g9):c—axb

and call h the arrow with components f and g. We have already observed
(in § 11.3) that the product of any two objects exists in Cat, in Grp, in Top,
and in Mon: in these cases (and in many others) it is called the direct
product. In a preorder, a product is a greatest lower bound.

Infinite products. If J is a set (=discrete category = category with
all arrows identities), then a functor F:J—C is simply a J-indexed
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family of objects ;€ C, while a cone with vertex ¢ and base g; is just a
J-indexed family of arrows f;:c—a;. A universal cone p;:I1;a,—a;
thus consists of an object IT;a;, called the product of the factors a;,
and of arrows p;, called the projections of the product, with the following
universal property: To each J-indexed family (=cone) f;: c—a; there is
a unique f

fie—Ia;, with pf=f, jeJ.

The arrow f uniquely determined by this property is called the map
(to the product) with components f;, jeJ. Also {f;|jeJ}f is a bi-
jection

I1,C(c,ap=Clc, 1;a)), (5)

natural in ¢. Here the right hand product is that in C, while the left-hand
product is taken in Set (where we assume that C has small hom-sets).
Observe that the hom-functor C(c, —) carries products in C to products
in Set (see § V.4). Products over any small set J exist in Set, in Top,
and in Grp; in each case they are just the familiar cartesian products.

Powers. If the factors in a product are all equal (a; = b € C for all j)
the product I7;a; = I1;b is called a power and is written I1;b = b, so the

C(c, by =C(c, b’), (6

natural in ¢. The power on the left is that in Set, where every small power
X7 exists (and is the set of all functions J— X).

Equalizers. 1f J =], a functor F:|}|—C is a pair f,g:b—a of
parallel arrows of C. A limit object d of F, when it exists, is called an
equalizer (or, a difference kernel”) of f and g. The limit diagram is

d<bia, fe=ge (7

(the limit arrow e amounts to a cone a«<—d—b from the vertex d). The
limit arrow is often called the equalizer of f and g; its universal property
reads: To any h:c—b with fh=gh there is a unique h':c—d with
eh'=h

In Set, the equalizer always exists; d is the set {xeb|fx=gx} and
e:d—b is the injection of this subset of b into b. In Top, the equalizer
has the same description (d has the subspace topology). In Ab the equalizer
d of f and ¢ is the usual kernel of the difference homomorphism
f—g:b—a

Fqualizers for any set of arrows from b to a are described similarly.
Any equalizer e is necessarily a monic.
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Pullbacks. If J = (— - «), a functor F: (— + «)—C is a pair of arrows
b-Lra<-d of C with a common codomain a. A cone over such a functor
is a pair of arrows from a vertex ¢ such that the square (on the left)

k

c—* 4 bx ,d—2t d
B
b—fm, b———i—»a

commutes. A universal cone is then a commutative square of this form,
with new vertex written b x ,d and arrows p, g as shown on the right,
such that for any square with vertex c there is a unique r:c—bx ,d
with k =qr, h=pr. The square formed by this universal cone is called a
pullback square or a“cartesian square” and the vertex b x ,d of the universal
cone is called a pullback, a “fibered product”, or a product over (the
object) a. This construction, possible in many categories, first became
prominent in the category Top. If g : d—a is a “fiber map” (of some type)
with “base” a and f is a continuous map into the base, then the projec-
tion p of the puliback is the “induced fiber map” (of the type considered).

The pullback of a pair of equal arrows f: b—a«b: f, when it exists,
is called the kernel pair of f. Itis an object d and a pair of arrows p, g : d—b
such that fp= fq:d—a and such that any pair h, k: c—a with fh= fk
can be written as h=pr, k=qr for a unique r:c—d.

If J=0 is the empty category, there is exactly one functor 0—C;
namely, the empty functor; a cone over this functor is just an object
ce C (ie., just a vertex). Hence a universal cone on 0 is an object ¢ of C
such that each object ¢ e C has a unique arrow c--»>t. In other words,
a limit of the empty functor to C is a terminal object of C.

Limits are sometimes defined for diagrams rather than for functors.
In detail, let C be a category, U C the underlying graph of C, and G
any graph. Then a diagram in C of shape G is a morphism D: G—U C of
graphs. Now define a cone u:c¢->D to be a function assigning to each
object i€ G an arrow y;:c—D; of C such that Dhoy;=pu; for every
arrow h:i—j of the graph G. This is just the previous definition of a cone
(a natural transformation p:Ac-+»D), coupled with the observation
that this definition uses the composition of arrows in C but not in the
domain G of D. A limit for the diagram D is now a universal cone 1: c--D.

This variation on the definition of a limit yields no essentially new
information. For, let FG be a free category generated by the graph G,
and P:G—U(FG) the corresponding universal diagram. Then each
diagram D:G—UC can be written uniquely as D=UD'-P for a
(unique) functor D’': FG—C, and one readily observes that limits
(and limiting cones) for D’ correspond exactly to those for D.
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Exercises

1. In Set, show that the pullback of f: X —Z and g: Y—Z is given by the set of
pairs {{x,y> |xe X, ye Y, fx=gy}. Describe pullbacks in Top.

2. Show that the usual cartesian product over an index set J, with its projections,
is a (categorical) product in Set and in Top.

3. If the category J has an initial object s, prove that every functor F:J—C to
any category C has a limit, namely F(s). Dualize.

4. In any category, prove that f:a—b is epi if and only if the following square is
a pushout:

s
a—-—b

5. In a pullback square (8), show that f monic implies ¢ monic.

6. In Set, show that the kernel pair of f: X — Y is given by the equivalence relation
E={{x,x>|x,x X and fx = fx'}, with suitable maps EZ3X.

7. (Kernel pairs via products and equalizers.} If C has finite products and equalizers,
show that the kernel pair of f: a— b may be expressed in terms of the projections
p..p;:axa—a as p e pye, where e is the equalizer of fp1, [P, axa—b
(cf. Exercise 6). Dualize.

8. Consider the following commutative diagram

. ye s
l-———) —_— .
(a) If both squares are pullbacks, prove that the outside rectangle (with top
and bottom edges the evident composites) is a pullback.
(b) If the outside rectangle and the right-hand square are pullbacks, so is the
left-hand square.

9, (Equalizers via products and pullbacks.) Show that the equalizer of f,g:b—a

may be constructed as the pullback of
(L, f):b—>bxa—b:(1,,49).

10. If C has pullbacks and a terminal object, prove that C has all finite products
and equalizers.

5. Categories with Finite Products

A category C is said to have finite products if to any finite number of
objects ¢, ..., ¢, of C there exists a product diagram, consisting of a
product object ¢, x -+ x ¢, and n projections p;:¢; X --+ X €,—>C;, for
i=1, ..., n, with the usual universal property. In particular, C then has a
product of no objects, which is simply a terminal object t in C, as well



