VI. Monads and Algebras

In this chapter we will examine more closely the relation between uni-
versal algebra and adjoint functors. For each type t of algebras (§V.6),
we have the category Alg, of all algebras of the given type, the forgetful
functor G : Alg, — Set, and its left adjoint F, which assigns to each set .S
the free algebra FS of type 7 generated by elements of S. A trace of this
adjunction {F, G, ¢) : Set— Alg, resides in the category Set; indeed, the
composite T=GF is a functor Set—Set, which assigns to each set S
the set of all elements of its corresponding free algebra. Moreover, this
functor T is equipped with certain natural transformations which give
it a monoid-like structure, called a “monad”. The remarkable part is then
that the whole category Alg, can be reconstructed from this monad in Set.
Another principal result is a theorem due to Beck, which describes
exactly those categories 4 with adjunctions {F, G, ¢): X— A which
can be so reconstructed from a monad T in the base category X. It then
turns out that algebras in this last sense are so general as to include the
compact Hausdorff spaces (§ 9).

1. Monads in a Category

Any endofunctor T:X—X has composites T?=T-T:X—X and
T3=T%T:X—X. If u: T*>-T is a natural transformation, with
components p,: T>x— Tx for each xe X, then Tu: T*-T? denotes
the natural transformation with components (Tu), = T(x,): T x— T?x
while uT: T3+ T? has components (uT), = pir,. Indeed, Ty and pT
are “horizontal” composites in the sense of § I1.5.

Definition. A monad T=(T,n, 1) in a category X consists of a
Sunctor T: X— X and two natural transformations

n:ly=»T, pw:T*>>T (1)
which make the following diagrams commute
T3 T8, 12 IT— T2 T]
uTl lu I ll‘ I (2)
T?—£—T, T = T = T.
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Formally, the definition of a monad is like that of a monoid M in
sets, as described in the introduction. The set M of elements of the monoid
is replaced by the endofunctor T: X — X, while the cartesian product x
of two sets is replaced by composite of two functors, the binary operation
M xM—M of multiplication by the transformation u: T?-- T and
the unit (identity) element n: 1—M by n: Iy~ T. We shall thus call
the unit and p the multiplication of the monad T the first commutative
diagram of (2} is then the associative law for the monad, while the second
and third diagrams express the left and right unit laws, respectively.
All told, a monad in X is just a monoid in the category of endofunctors
of X, with product x replaced by composition of endofunctors and unit
set by the identity endofunctor.

Terminology. These objects (X, T,#, u) have been variously called
“dual standard construction”, “triple”, “monoid”, and “triad”. The
frequent but unfortunate use of the word “triple” in this sense has achieved
a maximum of needless confusion, what with the conflict with ordered
triple, plus the use of associated terms such as “triple derived functors”
for functors which are not three times derived from anything in the world.
Hence the term monad.

Every adjunction {F,G,n,¢)>:X—A gives rise to a monad in the
category X. Specifically, the two functors F: X— A and G: A— X have
composite T=GF an endofunctor, the unit # of the adjunction is a
natural transformation 5 :/-T and the counit ¢: FG—1I, of the ad-
junction yields by horizontal composition a natural transformation
n=GeF:GFGF--GF=T. The associative law of (2) above for this u
becomes the commutativity of the first diagram below

GFGFGFErr, GFGF FGFG—LE L, FG
GeFGF J J GeF jv tFG J ¢
GFGF—%Ff _,GF, FG——],.

pe

Dropping G in front and F behind, this amounts to the commutativity
of the second diagram, which holds by the very definition (§ 11.4) of the
(horizontal) composite ee =¢ - (F Gg)=¢ - (¢ F G) (i.e., by the “interchange
law” for functors and natural transformations). Similarly, the left and
right unit laws of (2) reduce to the diagrams

Ik GFLGFGF %1 _GFI,
\ J,G%
GF

which are essentially just the two triangular identities

1=GenG:G-G =eF-Fy:F=F
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for an adjunction. Therefore (GF,n, G¢F) is indeed a monad in X.
Call it the monad defined by the adjunction {F,G,n,¢&).

For example, the firee group monad in Set is the monad defined by
the adjunction (F,G, ¢):Set— Grp, with G:Grp—Set the usual
forgetful functor.

Dually, a comonad in a category consists of a functor L and trans-
formations

L:A—A, &e:L->I, §:LI’ (1°P)

which render commutative the diagrams

L—>— 12 L = L = L
(sl lw I J(s ]
| Lt 2t g,

oL

Each adjunction {(F,G,n,&>: X— A defines a comonad {FG,&, FnG) in A.

What is a monad in a preorder P? A functor T: P— P is just a function
T: P— P which is monotonic (x £y in P implies Tx < Ty); there are
natural transformations » and u as in (1) precisely when

x<Tx, T(Tx)<Tx (3)

for all x e P; the diagrams {2) then necessarily commute because in a
preorder there is at most one arrow from here to yonder. The first equation
of (3) gives Tx < T(Tx). Now suppose that the preorder P is a partial
order (x £ y < x implies x = y). Then the Eqgs. (3) imply that T(Tx)=Tx.
Hence a monad T in a partial order P is just a closure operation t in P;
that is, a monotonic function t: P— P with x <tx and t{tx)=tx for all
xeP.

We leave the reader to describe a morphism (T, u, ny— T, w'.n">
of monads (a suitable natural transformation T— T’) and the category
of all monads in a given category X.

2. Algebras for a Monad

The natural question, “Can every monad be defined by a suitable pair
of adjoint functors?” has a positive answer, in fact there are two positive
answers provided by two suitable pairs of adjoint functors. The first
answer (due to FEilenberg-Moore [1965]) constructs from a monad
{T,n, 1y in X a category of XT of “T-algebras™ and an adjunction
X— X7 which defines {T,#n,u> in X. Formally, the definition of a
T-algebra is that of a set on which the “monoid” T acts (cf. the introduc-
tion).
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Definition. If T={Tn,u)> is a monad in X, a T-algebra {x, h) .
a pair consisting of an object x € X (the underlying object of the algebra
and an arrow h: Tx—x of X (called the structure map of the algebra
which makes both the diagrams

T x—1" s Tx x—e L, Tx

S SR N S
Tx —b 5 x X

commute. ( The first diagram is the associative law, the second the unit law
A morphism [:{x,hy—{x' 'y of T-algebras is an arrow f:x—x" o
X which renders commutative the diagram

xe—" Tx

; J Jn 0

X" Tx .

Theorem 1 (Every monad is defined by its T-algebras). If {T,n, 1
is a monad in X, then the set of all T-algebras and their morphisms Jorr
a category X'. There is an adjunction

CFTLGT T 6Ty X — X7

in which the functors G™ and F™ are given by the respective assignment

<ﬁx,h>+———>x X"‘*’<TX,#X>
G": 11‘ P FT: Jf Jrf 3
X y——x’, X'——{Tx, p1.>,

while n" =5 and e"(x,h>=h for each T-algebra {x,h). The monac
defined in X by this adjunction is the given monad {T,nq. pw.

The proof is straightforward verification. If Sl hy— X h
and g:<{x,h'>—<{x" h"> are morphisms of T-algebras, so is thell
composite g f; with this composition of arrows, the T-algebras evidently
form a category X7, as asserted. The functor G™: XT— X is the evident
functor which simply forgets the structure map of each T-algebra. On
the other hand, for each xe X the pair {Tx,u,: T(Tx)—>Tx) is a T-
algebra (the free T-algebra on x), in view of the associative and (left)
unit laws for the monad T. Hence x—(Tkx, i) does indeed define a
functor FT: X— X7, as asserted. Then G FT x — GT(Tx,u)>=Tx, so
the unit n of the given monad is a natural transformation =" I, GT FT
On the other hand, FT G"(x, h) = (Tx, p1,.>, while the first square in the
definition (1) of a T-algebra (x, h) states that the structure maph:Tx—x
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is a morphism (Tx, pu,>-—<{x, h> of T-algebras. The resuiting trans-
formation
ey =h:FTGT(x,hy—{x, h)

is natural, by the definition (above) of a morphism of T-algebras. The
triangular identities for an adjunction read

Tnx x
Tx—"1 >TTx x—x 5 Tx
N JV“)( N ih
Tx X

The first holds by the {right) unit law for T, the second by the unit law
(see (1)) for a T-algebra. Therefore #n* and ¢' define an adjunction. as
stated.

This adjunction thus determines a monad in X. The endofunctor
GT FT is the original T, its unit #” is the original unit, and its multiplica-
tionuT =G e FThas u"x = GTe"(Tx, u,> = G p, = p,, so is the original
multiplication of T. The proof is complete.

We now give several examples which show that the T-algebras for
familiar monads are the familiar algebras.

Closure. A closure operation T on a preorder P is a monad in P
(see § 1); a T-algebra is then an x € P with Tx < x (the structure map).
Since x < Tx for all x, a T-algebra is simply an element xe P with
x<Tx<x. If Pis a partial order, this means that x=Tx, so that a
T-algebra is simply an element x of the partial order which is closed,
in the usual sense.

Group actions. If G is a (small) group, then for every (small) set X
the definitions

TX=GxX, XIGxX, Gx(GxX)—GxX,
x— U, x) g1, (g2 X)0F{g1 g2, X)

for x € X, g,, 9, € G and u the unit element of G, define a monad (T, n, u>
on Set. A T-algebra is then a set X together with a function h:G x X — X
(the structure map) such that always

h(g, g5, X)= h(g;,h(g,, X)), hlu, x)=x.

If we write g+ x for h(g,x), these are just the usual conditions that
(g, x>+-g- x defines an action of the group G on the set X. That T-
algebras for the monad T are just the group actions is not a surprise,
since our definition of T-algebras was constructed on the model of
group actions.
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Modules. 1f R is a (small) ring, then for each (small) abelian group A

the definitions

TA=R®A, A—>R®A, RRRRRA)—R®A,
a+1Q®a, R, ®a)=rrna,

for ae A, r|,r, € R, define a monad on Ab. Much as in the previous case,
the T-algebras are exactly the left R-modules.

Exercises

L.

(TSI o)

Complete semi-lattices (E. Manes; thesis). Recall that a complete semi-lattice is

a partial order Q in which every subset S C Q has a supremum (least upper bound)

in Q. Let 2 be the covariant power set functor on Set so that 2 X is the set of all

subsets 5§ C X, while for each function f: X—Y, (2 f)S is the direct image of §

under f. For each set X, let #y: X—2X send each xe X to the one point

set {x}, while py: 2P X— 2 X sends each set of sets into its union.

{a) Prove that (2, n, p> is a monad 2 on Set.

{b) Prove that each Z-algebra {X,h) is a complete semi-lattice when x<y
is defined by h{x, y} =y, and supS=hS$ for each SC X.

{¢) Prove conversely that every (small) complete semi-lattice is a #-algebra
in this way.

(d) Conclude that the category of Z-algebras is the category of all (small)
complete semi-lattices, with morphisms the order and sup-preserving
functions.

. Show that GT: XT— X creates limits.
. (a} For monads <T,#, x> and {T;n’, &) on X, define a morphism ¢ of monads

as a suitable natural transformation 8: T T", and construct the category
of all monads in X.

(b) From # construct a functor 8*: XT— X7 such that G™ §#*=G” and a
natural transformation FT--@*- FT',

3. The Comparison with Algebras

Suppose we start with an adjunction X— A4, construct the monad T
defined in X by the adjunction and then the category X7 of T-algebras;
we then ask: How is this related to the original category A? A full answer
will relate not only the categories, but the adjunctions, and is provided
by the following comparison theorem.

Theorem 1 ( Comparison of adjunctions with algebras). Let
(F.G,ne>: X—A

be an adjunction, T={GF, y, Ge F)> the monad it defines in X. Then there
is a unique functor K: A— X7 with GTK =G and KF = FT.
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Proof. The conclusion asserts that we can fill in the arrow K in the
following diagram so that both the F-square and the G-square commute

AKX XT
F JG FTHGT ()
X = X

Now the counit ¢ of the given adjunction defines for each a € 4 an arrow
Ge,: GFGa—Ga. This arrow may be considered as a structure map h
for a T-algebra structure on the object Ga = x, for the requisite diagrams
{cases of (2.1)) are

GFGFGa-£t%,GFGa Ga— 5 GFGa

u(,-u:GpFGaJ JVG(:,, \ JG::ﬂ

GFGa i—-—»Ga R Ga .

G

They commute (the first is the definition of Geg, the second is one of the
triangular identities for the given adjunction). Therefore for any f:a—d’
in A we define K by

Ka={Ga,Ge,>, Kf=Gf:{Ga,Ge,»—<LGd, Ge,); (2)

since ¢ is natural, the proposed arrow K f commutes with G¢ and so is
a morphism of T-algebras. It is routine to verify that K is a functor with

KF=F", G'K=¢G. 3)

It remains to show K unique. First, each Ka must be a T-algebra,
and the commutativity requirement GT K = G means that the underlying
X-object of this T-algebra Ka is Ga. Therefore K a must have the form
Ka={Ga,h> for some structure map h; moreover G' K =G means
that the value of K on an arrow f in A must be K f = G f, exactly as in (2)
above. It remains only to determine the structure map h. Now (1) com-
mutes, and the two adjunctions {(F,G,...> and {FT,G7,...> have the
same unit 5, so the two functors K : A— X7 and the identity I: X — X
define a map of the first adjunction to the second, in the sense considered
in § IV.7. Proposition 1V.7.1 for this map then states that Ke¢=¢" K.
But K on arrows is G. so K¢, = Geg, for each a e A, while the definition
of the counit ¢7 of an algebra gives " Ka=¢T{Ga, h) =h. Thus Ke=¢"K
implies Ge, = h, so the structure map h is determined and K is unique.

For many familiar adjunctions {F, G, ...> this comparison functor K
will be an isomorphism; we then say that G is monadic (tripleable). For
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other authors (Barr-Wells {1985]), “triplable” means only that K be an
equivalence of categories. However, here is an easy example when KX is
not an isomorphism, and not even an equivalence. The forgetful functor
G : Top— Set has a left adjoint D which assigns to each set X the discrete
topological space (all subsets open in X), for the identity arrow 7, : X —
G D X is trivially universal from the object X to the functor G. This ad-
junction <D, G,n, ... > : Set— Top defines on Set the monad I = {I,1,1)
which is the identity (identity functor, identity as unit and as multi-
plication). The I-algebras in Set are just the sets, so the comparison
functor Top— Top’ = Set is in this case the given forgetful functor G.

4. Words and Free Semigroups

The comparison functor can be illustrated explicitly in the case of
semigroups. A semigroup is a set S equipped with an associative binary
operation v:Sx S-S. The free semigroup WX on a set X is like the
free monoid on X (§ I1.7). It consists of all words {(x, ... {x,> of positive
length n spelled in letters x; € X, where we write (x> to distinguish the
word {(x) in WX from the clement xe X. Words are multiplied by
juxtaposition,

(<\<]> <<n>)(<y1> <vvm>): <X1> <xn> <y1> <ym> 5

this multiplication v is associative, so makes F X = (W X, v) a semigroup,
with the set W X the disjoint union I X", n= 1,2, .... If G : Smgrp— Set
is the forgetful functor from the category of all small semigroups (forget
the multiplication), then the arrow 5y : X —GF X defined by x+(x)
{(send each x to the one-letter word in x) is universal from X to G. There-
fore F is a functor, left adjoint to G, and y defines an adjunction

{F,G,n,¢&>:Set—Smgrp .

If S is any semigroup (set S with an associative binary operation S x §— S,
written as multiplication) the counit &5 of this adjunction is by definition
that morphism ¢g: FGS—S of semigroups for which the composite
Geg ngs:GS—GFGS—GS is the identity: in other words, & is the
unique morphism of semi-groups which sends each generator (s> to s.
This means that

e5{{sy) ... (s, ) =5, ... s, {productin S) (1)

for all s;€S: The counit ¢ removes the “pointy bracket™ { .
Proposition 1. The monad on Set determined by the adjunction
Set—Smgrp is

W=(W:Set—Set. n:I->W, i: W= W>
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where WX = [ X" nyx={x) for each xe X, while py is

n=1

ltx(<<-"11> <-V1nl>> o LX) <an,<>>)
=X e X o XD X,

for all positive integers k, all k-tuples ny, ..., m of positive integers, and
all x;;€ X.

Proof. By definition,  x = {x), while g = G¢ F : W?-> Wis determined
by the formula above for &g where we have written each element of
W2 X as a word (of length k) in k words of the respective lengths n;, ..., n,.

More briefly, u, applied to a word of words removes the outer pointy
brackets.

Note that this description allows direct verification of the unit and
associative laws for the monad W, without overt reference to the notion
of a semi-group. For example, the associative law for u amounts to an
observation on three layers of pointy brackets, that removing first the
middle brackets and then the outer brackets gives the same result as
removing first the outer brackets and then the (newly) outer brackets.

Proposition 2. For the above word-monad W in Set, the W-algebras
have the form {(S,v,,v,,...>: A set S equipped with one n-ary operation
v, 8" S for each positive integer n, such that v =1 while for every
positive k and every k-tuple of positive integers ny, ..., m one has the identity

VeV, X XV ) =V g (ST TR S (2)

A morphism [:{S,v,,..>—<S vi....) of W-algebras is a function
f:S—S' which commutes with each v,, so that fv,=v, f":5"—§"

Proof. Consider a W-algebra ¢S, h: WS—S>. Since WS=115" the
structure map h is a list of n-ary operations v,:8"— S, one for each n.
The unit law for the algebra requires that hny =1, hence that v, be the
identity. On the other hand, since the product of sets is distributive over
the coproducts of sets,

W(WX):]__[ (uX”)k;IJ L[(X"‘ X e XX"k); uuxnx'*-“-*'nk’
k " k n k n

where n at the middle and the right runs over all k-tuples <{ni, ..., n).
With this notation, the associative law for the structure map h takes the
stated form (2).
The simplest case of this identity (2), for 3=2+4+1=1+2and v, the
identity, is
vy X D=vy=1,(Ixvy): SxSxS§—S.

If we write the binary operation v, as multiplication, this states that the
ternary operation v, satisfies, for all elements x, y,z€ S,

(xy)z=vilx. y.2)=x(y2).
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Similarly, v, must be the n-fold product. An easy induction proves

Corollary. The system <S,v,,v,,...> is a W-algebra, as above, if
and only if vy =1, v;:SxS—S is an associative binary operation on S,
and for all n=2, v, = v, (v, x 1): §"*' 8.

Thus, if we start with semigroups, regarded as sets (S, v) with one
associative binary operation, define the resulting monad W on Set, and
then construct the category of W-algebras, we get the same semigroups,
now regarded as algebraic system (S, v, v,,...), where v, =1, v, =v,
and v,,, is v, iterated. The comparison functor K :Smgrp—Set” is
the evident map <{S,v)>+—<{S,1,v,, ..., v,,...> where v, is the iterate of
the binary v. In other words, K is an isomorphism, but it replaces the
algebraic system (S, v)> with one associative binary operation by the same
set with all the iterated operations derived from this binary operation.

A similar description applies to algebras over other familiar monads
(Exercises 1, 2).

Exercises

1. Let W, be the monad in Set defined by the forgetful functor Mon—Set. Show
that a W,-algebra is a set M with a string vy, v, ... of n-ary operations v,, where
Vo : *— M is the unit of the monoid M and v, is the n-fold product.

2. For any ring R with identity, the forgetful functor G: R-Mod—Set from the
category of left R-modules has a left adjoint and so defines a monad ( Ty, n,1>
in Set.

(a) Prove that this monad may be described as follows: For each set X, T.X
is the set of all those functions f: X — R with only a finite number of non-
zero values; for each function 7 : X — Yand eachy ¢ ¥, [(Tet)f |, = %' f.,
with sum taken over all x e X with tx = y; foreachx e X, n.x: X > R is
defined by (7, x)x = 1, (5, x)x’ = 0; foreachk € Ta(Tr X), u. k : X — Ris
defined for x € X by (u, k), = % k, f., the sum taken over all f € T, X.

(b) From this description, verify directly that (T, n, u) is a monad.

(c) Show that the (Tg,n, uy-algebras are the usual R-modules, described
not via addition and scalar multiple, but via all operations of linear combina-
tion {The structure map h assigns to each f the “linear combination with
coefficients f, for each x e X.)

3. Give a similar complete description of the adjunction defined by the forgetful
functor CRng— Set, noting that T X is the ring of all polynomials with integral
coefficients in letters (i.e., indeterminates) x € X.

4. The adjunction {F, G, ) : Ab— Rng with G the functor “forget the multiplica-
tion in a ring” defines a monad T in Ab.

(a) Give a direct description of this monad, like that in the text for W, with X"
replaced by the n-fold tensor power and coproduct LI by the (infinite) direct
sum of abelian groups.

(b) Give the corresponding description of T-algebras and show that the com-
parison functor from rings to T-algebras is an isomorphism.



