Category Theory and Functional Programming

Day 1

1 October 2009

Welcome

Why categories?Why functional programmingWhy the combinationThis course

Why categories?

There's a tiresome young man in Bay Shore. When his fiancée cried, 'I adore The beautiful sea', He replied, 'I agree, It's pretty, but what is it for?'

Morris Bishop

3/32

Why categories?

Why functional programming

Why the combination

This course

Why categories?

What we are probably seeking is a "purer" view of functions: a theory of functions in themselves, not a theory of functions derived from sets. What, then, is a pure theory of functions? Answer: category theory.

Dana Scott

Why categories?

- Describe structure through their effect on other structure
- Internal (set theory) vs. external (category theory)
- "Abstract nonsense"
- General theory of things ("objects") and their relations ("morphisms")
- Applicable in a huge variety of contexts
- Organizing principle

5/32

Why categories?

Why functional programming

Why the combination

This course

Why functional programming

SQL, Lisp, and Haskell are the only programming languages that I've seen where one spends more time thinking than typing.

Philip Greenspun

Why the combination

- Category theory is a theory of functions
- and of functions on functions
- Functional programming treats functions as first-class objects
- Hence category theory and functional programming share a common mind-set
- (And advanced functional programming uses some advanced categorical concepts)

7/32

Why categories?

Why functional programming

Why the combination

This course

Organization

- Four days of lectures and exercises
- plus some self-study
- 1, 7, 21, 28 October
- Exercise sessions are too short to do all exercises
- so do some of them on your own (or in groups!)

People

Lecturers

René R. Hansen

Uli Fahrenberg

Organizers

René R. Hansen

Uli Fahrenberg

Hans Hüttel

9/32

Why categories?

Why functional programming

Why the combination

This course

How to pass this course

- Some of the exercises (marked with *) are for student presentation
- choose one, solve it, present solution to audience ⇒ PASS
- Presentation lasts approx. 10 minutes
- Check your presentation with René or me before

Categories, Diagrams, and Morphisms

- Categories (Pierce 1.1, 1.2)
- 6 Examples
- Diagrams and commutativity
- 8 Examples
- Monos, epis, isos (Pierce 1.3)
- A category of transition systems (Winskel-Nielsen (Models) 2.1)

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Categories

- Objects
- Arrows, AKA morphisms
- For each arrow f, a domain and a co-domain
- (hence write $f: A \rightarrow B$)
- Composition of compatible arrows: for $f : A \rightarrow B$ and $g : B \rightarrow C$, we have $f; g : A \rightarrow C$
- (usually write $g \circ f$ instead of f; g, bummer...)
- Composition is associative: $h \circ (g \circ f) = (h \circ g) \circ f$
- And for each object A there's an identity arrow id_A , such that $f \circ id_A = f$ and $id_B \circ f = f$ for all arrows $f : A \to B$
- That's all folks

Examples of categories

Objects	Arrows
Sets	Functions
Groups	Homomorphisms
Monoids	Homomorphisms
Posets	Monotone functions
CPOs	Continuous functions
Graphs	Homomorphisms

13/32

Categories

Examples

Diagrams and commutativity

Examples

Monos, epis, isos

A category of transition systems

Diagrams

• A diagram:

- so $f \circ g'$ and $g \circ f'$ exist
- The diagram commutes iff $f \circ g' = g \circ f'$

Comma categories

Given a category C and an object $A \in C$, define the commacategory $A \downarrow C$ by:

- Objects: C(A, B) for all $B \in C$ – all morphisms $f : A \to B$ in C with domain A
- Arrows:

So the objects in $A \downarrow C$ are arrows from C, and the arrows in $A \downarrow C$ are commuting triangles from C!

• And composition of arrows in $A \downarrow C$ is composition of commuting triangles in C.

This is called the comma category, or co-slice of C under A.

15/32

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Duality

Where there's a co-slice, there's also a slice (for any object $A \in \mathcal{C}$):

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Duality

Where there's a co-slice, there's also a slice (for any object $A \in \mathcal{C}$):

- So the slice is just the co-slice with all arrows turned around
- Definition: The dual of a category C is the category C^{op} , which has the same objects but all arrows turned around.

17/32

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Monoids and pre-orders as categories

- A monoid is a set with an operation which is associative and has a unit.
- A monoid is a category with one object.
- A pre-order is a set with a relation which is reflexive and transitive.
- (A poset is a pre-order in which the relation is also antisymmetric.)
- A pre-order is a category with at most one morphism between any two objects.

Examples

Isomorphisms

Definition: An arrow $f: A \rightarrow B$ in a category C is an iso(morphism) if it has an inverse, i.e. an arrow $g: B \rightarrow A$ for which $g \circ f = id_A$ and $f \circ g = id_B$.

$$A \stackrel{f}{\longleftarrow} B$$

- One also writes $g = f^{-1}$.
- These are just the usual isomorphisms in your favourite categories.
- Definition: Objects $A, B \in \mathcal{C}$ are isomorphic if there is an isomorphism $f: A \rightarrow B$.
- Isomorphic objects are indistinguishable from the point of view of category theory
- (because their *external* properties are the same).

19/32

Categories

Diagrams and commutativity

Examples

Monos, epis, isos

Monos, epis, isos

A category of transition systems

Monomorphisms

Examples

In the category of sets and functions,

- an arrow $f: B \to C$ is injective (one-to-one) if f(x) = f(y)implies x = y for all $x, y \in B$.
- Equivalent: $f: B \to C$ is injective if $f \circ g = f \circ h$ implies g = h for all $g, h : A \rightarrow B$ and all A.

$$A \xrightarrow{g} B \xrightarrow{f} C$$

Arrow-only (external) property!

Definition: An arrow $f: B \to C$ in a category C is a mono(morphism) if $f \circ g = f \circ h$ implies g = h for all $g, h: A \rightarrow B$ and all $A \in \mathcal{C}$.

Warning: In a lot of categories, "injective" does not make sense, and even if it does, it may not be the same as "mono".

Epimorphisms

Again in the category of sets and functions,

- an arrow $f: A \rightarrow B$ is surjective (onto) if $\forall y \in B \exists x \in A : f(x) = y$.
- Equivalent: $f: A \to B$ is surjective if $g \circ f = h \circ f$ implies g = h for all $g, h: B \to C$ and all C.

$$A \xrightarrow{f} B \xrightarrow{g} C$$

Arrow-only (external) property!

Definition: An arrow $f: A \to B$ in a category $\mathcal C$ is an epi(morphism) if $g \circ f = h \circ f$ implies g = h for all $g, h: B \to C$ and all $C \in \mathcal C$.

Warning: In a lot of categories, "surjective" does not make sense, and even if it does, it may not be the same as "epi".

21/32

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Example (Pierce 1.3.6)

In the category of monoids and homomorphisms, the inclusion function $i : \mathbb{N} \hookrightarrow \mathbb{Z}$ is

- injective,
- a mono,
- not surjective,
- but also an epi!

A category of transition systems

- A transition system is a tuple (S, i, L, Tr) with $Tr \subset S \times L \times S$.
- A morphism of transition systems T = (S, i, L, Tr), T' = (S', i', L', Tr') is a pair $f = (\sigma, \lambda) : T \to T'$ of functions $\sigma: S \to S', \lambda: L \to L'$ for which $\sigma(i) = i'$ and

$$(s_1,a,s_2)\in \mathit{Tr}$$
 implies $(\sigma(s_1),\lambda(a),\sigma(s_2))\in \mathit{Tr}'$

- (Almost like a graph homomorphism)
- But wait: We want to be able to map labels in L to "nothing" (so we can abstract away actions)
- So we need partial functions $\lambda: L \to L'$
- And if $\lambda(a) = \bot$ above, then we want the transition to disappear.

23/32

Categories

Examples

Diagrams and commutativity

Examples

Monos, epis, isos

A category of transition systems

Idle transitions

(A transition system is a tuple (S, i, L, Tr) with $Tr \subseteq S \times L \times S$.)

Second try: Introduce idle transitions:

$$\mathit{Tr}_{\perp} = \mathit{Tr} \cup \{(s, \perp, s) \mid s \in \mathcal{S}\}$$

Now it works: A morphism of transition systems T = (S, i, L, Tr), T' = (S', i', L', Tr') is a pair $f = (\sigma, \lambda) : T \to T'$ of functions $\sigma : S \to S', \lambda : L \to L'$ for which $\sigma(i) = i'$ and

$$(s_1, a, s_2) \in \mathit{Tr}$$
 implies $(\sigma(s_1), \lambda(a), \sigma(s_2)) \in \mathit{Tr}'_{\perp}$

Together these form a category.

And we shall have to say much more about this category later.

Functors

11 Functors (Pierce 2.1)

Example

The category of categories

14 Natural transformations (Pierce 2.3)

15 Example

Functors Example The category of categories Natural transformations Example

Functors

Going up one level: We've seen lots of different categories now. What about a category of categories?

Objects: categories

Arrows: functors

Definition: A functor from a category $\mathcal C$ to a category $\mathcal D$ consists of a function F on objects and a function F on arrows

$$\begin{array}{ccc}
\mathcal{C} & \mathcal{D} \\
A & \xrightarrow{F} F(A) \\
f \downarrow & \xrightarrow{F} f(f) \\
B & \xrightarrow{F} F(B)
\end{array}$$

for which $F(id_A) = id_{F(A)}$ and $F(g \circ f) = F(g) \circ F(f)$.

A bit like graph homomorphisms!

Example (Pierce 2.1.2)

Example

• The Kleene star (or List) function from sets to sets:

$$S\mapsto S^*=\mathsf{List}(S)=ig\{\mathsf{words}\; s_1s_2\dots s_n\;|\;n\in\mathbb{N},\mathsf{all}\; s_i\in Sig\}$$

 Turn this into a functor from the category of sets and functions to itself:

$$f:S \to T \quad \mapsto \quad f^*:S^* \to T^* \ f^*(s_1s_2\dots s_n)=f(s_1)f(s_2)\dots f(s_n)$$

Or, in other words,

$$\mathsf{List}(f) = \lambda s_1 s_2 \dots s_n \cdot f(s_1) f(s_2) \dots f(s_n)$$

27/32

Functors

Example

The category of categories

Natural transformations

Example

Example (Pierce 2.1.3)

- Actually, S* is a monoid for all sets S:
 - Strings can be concatenated,
 - concatenation is associative
 - and has unit ε (empty string).
- Is Kleene star a functor from sets to monoids?
- Yes, for f^* is a monoid homomorphism for all functions f.

Functors Example

Natural transformations

The category of categories

Recall the category of categories:

Objects: categories

Arrows: functors

• What about composition of arrows?

Definition: For functors $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{E}$, the composite functor $G \circ F: \mathcal{C} \to \mathcal{E}$ is defined by

The category of categories

$$(G \circ F)(A) = G(F(A))$$
 on objects $(G \circ F)(f) = G(F(f))$ on arrows

- (Nothing surprising here)
- Associativity
- Identity functors

29/32

Functors Example The category of categories Natural transformations Example

Natural transformations

Going up another level:

- Categories
- Punctors: arrows between categories
- What about arrows between functors?

The functor category $\mathcal{D}^{\mathcal{C}}$ (for \mathcal{C}, \mathcal{D} categories) has

objects: functors

arrows: natural transformations

Natural transformations

Definition: A natural transformation $\eta: F \to G$ between functors $F, G: \mathcal{C} \to \mathcal{D}$ is a function from \mathcal{C} -objects to \mathcal{D} -arrows, $A \mapsto \eta_A: F(A) \to G(A)$ such that the diagrams

$$F(A) \xrightarrow{\eta_A} G(A)$$
 $F(f) \downarrow \qquad \qquad \downarrow G(f)$
 $F(B) \xrightarrow{\eta_B} G(B)$

commute for all arrows $f: A \rightarrow B$ in C.

31/32

Functors

Example

The category of categories

Natural transformations

Example

Example (Pierce 2.3.3)

rev: the function which reverses lists

- Polymorphic: input is list of any type
- So for any set S, we have a function $rev_S: S^* \to S^*$
- (Remember the Kleene star functor List from sets to monoids.)
- So rev is a function from sets to monoid homorphisms,

$$rev: S \mapsto rev_S: S^* \to S^*$$

- A natural transformation rev : List → List?
- Yes indeed √