
Category Theory and Functional
Programming

Day 1

1 October 2009

Welcome

1 Why categories?
2 Why functional programming
3 Why the combination
4 This course



Why categories? Why functional programming Why the combination This course

Why categories?

There’s a tiresome young man in Bay Shore.
When his fiancée cried, ‘I adore
The beautiful sea’,
He replied, ‘I agree,
It’s pretty, but what is it for?’

Morris Bishop

3 / 32

Why categories? Why functional programming Why the combination This course

Why categories?

What we are probably seeking is a “purer” view
of functions: a theory of functions in themselves,
not a theory of functions derived from sets.
What, then, is a pure theory of functions?
Answer: category theory.

Dana Scott

4 / 32



Why categories? Why functional programming Why the combination This course

Why categories?

Describe structure through their effect on other structure
Internal (set theory) vs. external (category theory)
“Abstract nonsense”
General theory of things (“objects”) and their relations
(“morphisms”)
Applicable in a huge variety of contexts
Organizing principle

5 / 32

Why categories? Why functional programming Why the combination This course

Why functional programming

SQL, Lisp, and Haskell are the only
programming languages that I’ve seen where
one spends more time thinking than typing.

Philip Greenspun

6 / 32



Why categories? Why functional programming Why the combination This course

Why the combination

Category theory is a theory of functions
and of functions on functions
Functional programming treats functions as first-class
objects
Hence category theory and functional programming share
a common mind-set
(And advanced functional programming uses some
advanced categorical concepts)

7 / 32

Why categories? Why functional programming Why the combination This course

Organization

Four days of lectures and exercises
plus some self-study
1, 7, 21, 28 October
Exercise sessions are too short to do all exercises
so do some of them on your own (or in groups!)

8 / 32



Why categories? Why functional programming Why the combination This course

People

Lecturers

René R. Hansen Uli Fahrenberg

Organizers

René R. Hansen Uli Fahrenberg Hans Hüttel
9 / 32

Why categories? Why functional programming Why the combination This course

How to pass this course

Some of the exercises (marked with ∗) are for student
presentation
choose one, solve it, present solution to audience⇒ PASS
Presentation lasts approx. 10 minutes
Check your presentation with René or me before

10 / 32



Categories, Diagrams, and Morphisms

5 Categories (Pierce 1.1, 1.2)
6 Examples
7 Diagrams and commutativity
8 Examples
9 Monos, epis, isos (Pierce 1.3)

10 A category of transition systems (Winskel-Nielsen
(Models) 2.1)

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Categories

Objects
Arrows, AKA morphisms
For each arrow f , a domain and a co-domain
(hence write f : A→ B)
Composition of compatible arrows: for f : A→ B and
g : B → C, we have f ; g : A→ C
(usually write g ◦ f instead of f ; g, bummer. . . )

Composition is associative: h ◦ (g ◦ f ) = (h ◦ g) ◦ f
And for each object A there’s an identity arrow idA, such
that f ◦ idA = f and idB ◦f = f for all arrows f : A→ B

That’s all folks

12 / 32



Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Examples of categories

Objects Arrows
Sets Functions
Groups Homomorphisms
Monoids Homomorphisms
Posets Monotone functions
CPOs Continuous functions
Graphs Homomorphisms

13 / 32

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Diagrams

A diagram:

X
f ′

//

g′
��

Z
g

��

W
f

// Y

so f ◦ g′ and g ◦ f ′ exist
The diagram commutes iff f ◦ g′ = g ◦ f ′

14 / 32



Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Comma categories

Given a category C and an object A ∈ C, define the comma
category A ↓ C by:

Objects: C(A,B) for all B ∈ C
– all morphisms f : A→ B in C with domain A
Arrows:

A

��������

��
7777777

B // C

So the objects in A ↓ C are arrows from C, and the arrows in
A ↓ C are commuting triangles from C !

And composition of arrows in A ↓ C is composition of
commuting triangles in C.

This is called the comma category, or co-slice of C under A.
15 / 32

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Duality

Where there’s a co-slice, there’s also a slice (for any object
A ∈ C):

co-slice cat. A ↓ C slice cat. C ↓ A

(A ↓ C)op

objects

A

��

B

B

��

A

A

B

OO

arrows

A

���������

��
9999999

B // C

B //

��
666666 C

���������

A

A

B //

CC������
C

[[777777

So the slice is just the co-slice with all arrows turned
around
Definition: The dual of a category C is the category Cop,
which has the same objects but all arrows turned around.

16 / 32



Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Duality

Where there’s a co-slice, there’s also a slice (for any object
A ∈ C):

co-slice cat. A ↓ C slice cat. C ↓ A (A ↓ C)op

objects

A

��

B

B

��

A

A

B

OO

arrows

A

���������

��
9999999

B // C

B //

��
666666 C

���������

A

A

B //

CC������
C

[[777777

So the slice is just the co-slice with all arrows turned
around
Definition: The dual of a category C is the category Cop,
which has the same objects but all arrows turned around.

17 / 32

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Monoids and pre-orders as categories

A monoid is a set with an operation which is associative
and has a unit.
A monoid is a category with one object.

A pre-order is a set with a relation which is reflexive and
transitive.
(A poset is a pre-order in which the relation is also
antisymmetric.)
A pre-order is a category with at most one morphism
between any two objects.

18 / 32



Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Isomorphisms

Definition: An arrow f : A→ B in a category C is an
iso(morphism) if it has an inverse, i.e. an arrow g : B → A for
which g ◦ f = idA and f ◦ g = idB.

A
f // B
g

oo

One also writes g = f−1.
These are just the usual isomorphisms in your favourite
categories.
Definition: Objects A,B ∈ C are isomorphic if there is an
isomorphism f : A→ B.
Isomorphic objects are indistinguishable from the point of
view of category theory
(because their external properties are the same).

19 / 32

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Monomorphisms

In the category of sets and functions,
an arrow f : B → C is injective (one-to-one) if f (x) = f (y)
implies x = y for all x , y ∈ B.
Equivalent: f : B → C is injective if f ◦ g = f ◦ h implies
g = h for all g,h : A→ B and all A.

A
g

//

h
// B

f
// C

Arrow-only (external) property!

Definition: An arrow f : B → C in a category C is a
mono(morphism) if f ◦ g = f ◦ h implies g = h for all
g,h : A→ B and all A ∈ C.
Warning: In a lot of categories, “injective” does not make
sense, and even if it does, it may not be the same as “mono”.

20 / 32



Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Epimorphisms

Again in the category of sets and functions,
an arrow f : A→ B is surjective (onto) if
∀y ∈ B ∃x ∈ A : f (x) = y .
Equivalent: f : A→ B is surjective if g ◦ f = h ◦ f implies
g = h for all g,h : B → C and all C.

A
f

// B
g

//

h
// C

Arrow-only (external) property!

Definition: An arrow f : A→ B in a category C is an
epi(morphism) if g ◦ f = h ◦ f implies g = h for all g,h : B → C
and all C ∈ C.
Warning: In a lot of categories, “surjective” does not make
sense, and even if it does, it may not be the same as “epi”.

21 / 32

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Example (Pierce 1.3.6)

In the category of monoids and homomorphisms, the inclusion
function i : N ↪→ Z is

injective,
a mono,
not surjective,
but also an epi!

22 / 32



Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

A category of transition systems

A transition system is a tuple (S, i ,L,Tr) with
Tr ⊆ S × L× S.
A morphism of transition systems T = (S, i ,L,Tr),
T ′ = (S′, i ′,L′,Tr ′) is a pair f = (σ, λ) : T → T ′ of functions
σ : S → S′, λ : L→ L′ for which σ(i) = i ′ and

(s1,a, s2) ∈ Tr implies (σ(s1), λ(a), σ(s2)) ∈ Tr ′

(Almost like a graph homomorphism)

But wait: We want to be able to map labels in L to “nothing”
(so we can abstract away actions)
So we need partial functions λ : L→ L′⊥
And if λ(a) = ⊥ above, then we want the transition to
disappear.

23 / 32

Categories Examples Diagrams and commutativity Examples Monos, epis, isos A category of transition systems

Idle transitions

(A transition system is a tuple (S, i ,L,Tr) with Tr ⊆ S × L× S.)

Second try: Introduce idle transitions:

Tr⊥ = Tr ∪ {(s,⊥, s) | s ∈ S}

Now it works: A morphism of transition systems
T = (S, i ,L,Tr), T ′ = (S′, i ′,L′,Tr ′) is a pair
f = (σ, λ) : T → T ′ of functions σ : S → S′, λ : L→ L′⊥ for
which σ(i) = i ′ and

(s1,a, s2) ∈ Tr implies (σ(s1), λ(a), σ(s2)) ∈ Tr ′⊥

Together these form a category.

And we shall have to say much more about this category later.
24 / 32



Functors

11 Functors (Pierce 2.1)
12 Example
13 The category of categories
14 Natural transformations (Pierce 2.3)
15 Example

Functors Example The category of categories Natural transformations Example

Functors

Going up one level: We’ve seen lots of different categories now.
What about a category of categories?

Objects: categories
Arrows: functors

Definition: A functor from a category C to a category D consists
of a function F on objects and a function F on arrows

C D

A � F //

f
��

F (A)

F (f )
��

�
F //

B �
F

// F (B)

for which F (idA) = idF (A) and F (g ◦ f ) = F (g) ◦ F (f ).
A bit like graph homomorphisms!

26 / 32



Functors Example The category of categories Natural transformations Example

Example (Pierce 2.1.2)

The Kleene star (or List) function from sets to sets:

S 7→ S∗ = List(S) =
{

words s1s2 . . . sn | n ∈ N,all si ∈ S
}

Turn this into a functor from the category of sets and
functions to itself:

f : S → T 7→ f ∗ : S∗ → T ∗

f ∗(s1s2 . . . sn) = f (s1)f (s2) . . . f (sn)

Or, in other words,

List(f ) = λs1s2 . . . sn . f (s1)f (s2) . . . f (sn)

27 / 32

Functors Example The category of categories Natural transformations Example

Example (Pierce 2.1.3)

Actually, S∗ is a monoid for all sets S:
Strings can be concatenated,
concatenation is associative
and has unit ε (empty string).

Is Kleene star a functor from sets to monoids?
Yes, for f ∗ is a monoid homomorphism for all functions f .

28 / 32



Functors Example The category of categories Natural transformations Example

The category of categories

Recall the category of categories:
Objects: categories
Arrows: functors
What about composition of arrows?

Definition: For functors F : C → D, G : D → E , the composite
functor G ◦ F : C → E is defined by

(G ◦ F )(A) = G(F (A)) on objects
(G ◦ F )(f ) = G(F (f )) on arrows

(Nothing surprising here)
Associativity X
Identity functors X

29 / 32

Functors Example The category of categories Natural transformations Example

Natural transformations

Going up another level:
1 Categories
2 Functors: arrows between categories
3 What about arrows between functors?

The functor category DC (for C,D categories) has
objects: functors
arrows: natural transformations

30 / 32



Functors Example The category of categories Natural transformations Example

Natural transformations

Definition: A natural transformation η : F →̇G between functors
F ,G : C → D is a function from C-objects to D-arrows,
A 7→ ηA : F (A)→ G(A) such that the diagrams

F (A)
ηA //

F (f )
��

G(A)

G(f )
��

F (B) ηB
// G(B)

commute for all arrows f : A→ B in C.

31 / 32

Functors Example The category of categories Natural transformations Example

Example (Pierce 2.3.3)

rev : the function which reverses lists
Polymorphic: input is list of any type
So for any set S, we have a function revS : S∗ → S∗

(Remember the Kleene star functor List from sets to
monoids.)
So rev is a function from sets to monoid homorphisms,

rev : S 7→ revS : S∗ → S∗

A natural transformation rev : List →̇ List?
Yes indeed X

32 / 32


