Category Theory and Functional
Programming

Day 2

7 October 2009

Categories, functors, natural transformations

Graphs vs. categories

Exercise P-1.1.20.2 (Petur)
Transition systems revisited

Functors

Exercise P-2.1.10.3

Exercise ML-1.3.4

Natural transformations

Exercise P-2.3.11.2 (Mikkel)

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Graphs

@ Set of points V

@ Set of edges E

@ For each edge e € E, a source src(e) € V and a
target tgt(e) € V

@ (Write e: x — yif src(e) = x and fgt(e) = y)

(These are directed multigraphs; to say E C V x V' is
fine as long as there’s at most one edge between any two
points.)

@ That’s all folks:
V.E,src. E— V,tgt.: E—-V

3/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Reflexive graphs

@ Set of points V

@ Set of edges E

@ For each edge e € E, a source src(e) € V and a
target tgt(e) € V

@ (Write e: x — y if src(e) = x and fgt(e) = y)

@ For each point x € V, a degenerate edge deg(v) € E

@ That’s all folks:
V.E,src.E— V,igt:E— V,deg:V — E

4/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Categories

@ Set of points V

@ Set of edges E

@ For each edge e € E, a source src(e) € V and a
target tgt(e) € V

@ (Write e: x — yif src(e) = x and fgt(e) = y)

@ For each point x € V, a degenerate edge deg(v) € E

@ Foreache; : x — yand es : y — z, a composite
€r2o0€q: X — Z,

@ with associativity: ez o (€20 €1) = (€3 0 &) o e; whenever
these are defined,

@ and identities: for all edges e : x — y, e o deg(x) = e and
deg(y)oe=e.

@ That’s all folks:
V.E,src.: E—-V, tgt:E—V,deg:V - E,o: ExyE—E

5/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Categories

@ Set of objects Cy

@ Set of arrows (4

@ For each arrow f € Cy, a domain dom(f) € Cy and a
co-domain cod(f) € Cy

@ (Write f : A— Bif dom(f) = A and cod(f) = B)

@ For each object A € Cp, an identity arrow ida € Co
@ Foreachfi: A— Band f, : B— C, acomposite

frofi : A— C,

@ with associativity: fyo0 (o f;) = (f3 0) o f{ whenever these
are defined,

@ and identities: for all arrows f: A— B, foidsg = f and
idg of = f.

@ Thats all folks:
Co,C1,dOm,COd - Cq —>Co,id :Co — Cq,0:Cq X, C1 — Cq

6/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise P-1.1.20.2 (Petur)

A group (G, *, e, ~1)is aset G equipped with a binary
operation x, a distinguished element e, and a unary
operation ~! such that

(@) (xxy)xz=xx(yx*2z)forall x,y,z e G,

(b) exx=x=x=xeforall x € G, and

c) xxx 'T=e=x""xxforall x € G.

Show how an arbitrary group can be considered as a

category.
7/32
Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise
Exercise P-1.1.20.2 (Petur)

A monoid (G, x,e) is a set G equipped with a binary
operation =, a distinguished element e
such that

(@) (xxy)xz=xx*x(yx2z)forall x,y,z € G,
(b) exx =x=x=xeforall x € G, and

Show how an arbitrary monoid can be considered as a
category.

8/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

@ A transition system is a tuple (S, i, L, Tr) with
Trc SxLxS. Goal: Externalize this

@ A transition system is a graph (S, Tr) with an initial state
I+« — Sandalabeling A\: Tr — L

@ x : the one-element set; i : x — S picks out one element of
S

@ The category of pointed sets: comma category = | Set
*

*
] objects:l arrows: / \

A A——B

= objects: sets with a basepoint
arrows: functions which preserve the basepoint

9/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

@ Transition system without labels = pointed graph
= want comma category x | Graph

@ Turn one-element set * into graph: add degenerate edge
= the “terminal” reflexive graph:

* = X Q deg(x)

@ The comma category of pointed reflexive graphs x | RGraph:

@ objects: reflexive graphs with initial state
arrows: graph homomorphisms which preserve the initial
state

= unlabeled transition systems (and functional simulations)

10/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

@ A transition system is a pointed reflexive graph x 4 (S, Tr)
together with a labeling ¢ : Tr — L.
Need more externalization

@ Idea: a set is a graph with one point:

b
{a,b,c} = aCQX?

= A transition system is a diagram x . (S, Tr) 4 (*,L) in the
category of reflexive graphs.

@ Forget about internal structure: * N N G,
(externalization!)

11/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

® A morphism of transition systems T = (S,/, L, Tr),
T'= (S, L, T)isapair f = (o,\) : T — T’ of functions
0:5—8,X:L— L forwhicho(i) =i and

(s1,a,82) € Tr implies (o(s1),A(a),0(s2)) € Tr}.

@ Now looks like T—— T

| e

GL—>G/L

= a diagram in the category of reflexive graphs
@ (“Pointed arrow category”)

12/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Functors

@ A functor from a category C to a category D consists of a
function F on objects and a function F on arrows

C D

A»—F> F(A)

fJI F >lF(f)

BI—F> F(B)

@ for which F(idA) = idF(A)
@ and F(gof)= F(g)o F(f).

@ Structure-preserving function between categories.

@ Fis full & surjective on arrows
@ F is faithful < injective on arrows

13/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise P-2.1.10.3

Let M, N be two monoids (groups; preorders) considered as
one-object categories. What are the functors from M to N?

14/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations

Exercise ML-1.3.4

Prove that there is no functor from groups to Abelian groups
which maps each group to its center.

@ A group G is Abelian if its operation * is commutative;
xxy=yxxforall x € G.

@ The center Z(G) of a group G is the set of all elements
which commute with all others;

Z(G)={xecG|VyeG:xxy=yx*x}

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations

Natural transformations

A natural transformation n : F = G between functors
F,G:C — D is a function from C-objects to D-arrows,
A +— na: F(A) — G(A) such that the diagrams

F(A) —2- G(A)

F(f)l lG(f)

F(B) =5 G(B)

commute for all arrows f: A — Bin C.

Exercise

15/32

Exercise

16/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise P-2.3.11.2 (Mikkel)

Let P be a preorder (regarded as a category) and C a category.
Let S, T : C — P be functors. Show that there is a unique
natural transformation 7 : S — Tif and only if S(C) < T(C) for
all C e C.

17/32

Adjoint functors

Definition

Example (Pierce 2.4.1-2)
Example: free groups
Co-units

Examples

Special types of adjoints

Definition Examples Co-units Examples Special types of adjoints

Adjoint functors

Definition: Functors F : C = D : G are adjoint if there is a
natural transformation » : |- — G o F such that for each arrow
f: X — G(Y) € C, there is a unique arrow f* : F(X) — Y € D
for which the diagram

X — G(F(X))

e

G(Y)

commutes. This is called the universal property.

@ [= left adjoint, G = right adjoint
@ 7 = unit —transformation from identity functorto Go F

19/32

Definition Examples Co-units Examples Special types of adjoints

Example (Pierce 2.4.1-2)

The functor List : Set — Mon is left adjoint to the forgetful
functor U : Mon — Set, with unit / : Iget — U o List given by

is(s) = [s]:
S— S, U(List(S)) «2L— List(S)
f U(fﬁ) . U i
U(M) < 5 M

e Example 2.4.2: length = 1
@ Left adjoints to forgetful functors are called free functors

@ So List(S) is the free monoid on S

20/32

Definition Examples Co-units Examples Special types of adjoints

Example: free groups

For a set S, define the free group F(S) on S as follows:
@ Let W be the set of finite words w = wyws . .. wp, with each
w; € S,orw; =s ' forsomese S. That's just syntax.
@ A word w can be reduced if it contains a subword ss—! or
s~ 's. Then w is equivalent to w-with-the-subword-removed.
@ This defines an equivalence relation on W. The free group
F(S) is the set of equivalence classes of W.
@ Example:
F({a,b}) = {c,a b,ab,ab~',a 'b,a b=, ba ba',...}
This is functorial, and F is left adjoint to the forgetful functor
U : Group — Set.

@ Universal property: s—14 U(F(S))

\ l““”
U(G)

21/32

Definition Examples Co-units Examples Special types of adjoints

Alternative characterizations of adjoints

Functors F : C = D : G are adjoint if
thereisaunitn: lp > Go F thereisaco-unite: Fo G- Ip

such that for each arrow such that for each arrow
f:X— G(Y)eC,thereisa g:F(X)— YeD,thereisa
unique arrow unique arrow
f*: F(X) — Y € Dforwhich g*: X — G(Y) € C for which
the diagram the diagram

X —X G(F(X)) FIG(Y)X—y

\ lG(fﬁ) F(g*)T /
G(Y) F(X)

commutes. commutes.

@ For F: Set = Mon : G and F : Set = Group : G,
ey([S1,82,-..,8n]) = S1 * Sp * - - % Sp.

22/32

Definition Examples Co-units Examples Special types of adjoints

Example RB-6.3.1: floor and ceiling

@ 7 and IR are partial orders =- categories
@ The forgetful functor U : Z — R has

@ left adjoint Ceil : R — 7Z (“smallest integer not smaller
than”) and

@ right adjoint Floor : R — Z (“greatest integer not greater
than”)

@ Adjunction Ceil : R = 7Z : U has unit ny = (X < Ceil(X))
and co-unitey = (Ceil(Y) = Y) (an isol)

@ Adjunction U : Z <= R : Floor has unit nx = (X = Floor(X))
(an iso!) and co-unit ey = (Floor(Y) <Y

23/32

Definition Examples Co-units Examples Special types of adjoints

Example RB-6.3.4(1): free category on a graph

The free category F(G) ona graph G= (V, E) has
@ as objects all points in V

@ as arrows all paths in G: all sequences (e, e, ..., ep) of
edges in E with tgt(e;) = src(eji 1)
@ and composition of arrows is concatenation of paths

= left adjoint to the forgetful functor: F : Graph = Cat : U

— Like the adjunction Set = Mon, but many-object!

24/32

Definition Examples Co-units Examples Special types of adjoints

Special types of adjoints

An adjunction F:C = D: Gis

@ a reflection if G is fully faithful
< allarrows ey : F(G(Y)) — Y are isos

@ a co-reflection if F is fully faithful
< all arrows nx : X — G(F(X)) are isos

@ an adjoint equivalence if it is both a reflection and a
co-reflection

25/32

Transition systems, synchronization trees, languages

Synchronization trees
Languages
Conclusion

Synchronization trees Languages Conclusion

Synchronization trees

@ Recall: A transition system is a tuple (S, /, L, Tr) with
Irc SxLxS. (Backtothe old notation!)

@ A synchronization tree is a transition system in which there
is precisely one path from j to any state s € S:

e every state is reachable
e acyclic
@ NO joins
@ Recall: A morphism of transition systems is a pair
(o,A): (S,i, L, Tr) — (S, L', Tr") of functions o : S — &,
A L— L' forwhich (i) = i and

(s1,a,82) € Tr implies (o(sy),A(a),0(s2)) € Tr}

@ T: category of transition systems
@ S: fully faithful subcategory of synchronization trees

27/32

Synchronization trees Languages Conclusion

Synchronization trees

@ /: S — Tis fully faithful
@ Right adjoint: unfolding:
@ Given transition system T = (S, i/, L, Tr), define
synchronization tree ts(T) = (S',/, L, Tr') (same labels) by
o S’ =setofallpathsin T
o /"= () (empty path)
e Tr' = one-step continuations of paths:

T = {((31,---,Sk),a,(31,...,3k73k+1) ‘ (Sk;aysk_H) € Tr}
@ Co-unit morphisms 7 : i(ts(T)) — T given as
et = (p,id), with .
() =1 (s1,...,8n) = sn

@ Universal property: i(ts(T)) =— T

i(f*)T /

i(Y)

28/32

Synchronization trees Languages Conclusion

Synchronization trees

= co-reflectioni : S T: ts

= all unit morphisms are isos.

@ That is, for all synchronization trees Y, the morphism
ny : Y — ts(i(Y)) is an iso.
@ Any synchronization tree is isomorphic to its unfolding.

29/32

Synchronization trees Languages Conclusion

Languages

@ A language over a labeling L is a pair (H, L) with H C L*
prefix-closed: Vs € L*Vac L:sac H=sc H

@ Morphisms of languages (H, L) — (H', L’): partial functions
A:L— L' forwhich *(w) € H' forallw e H

= category of languages L

@ The language of a transition system T = (S, /, L, Tr): usual
stuff: tI(T) = (H, L) with

H=1{aja...ap|3Ipathi L s =& ... 2% 5,in T}

@ Extendto functor f/ : T — L by sl(o,) = A
@ Composition gives functor s/ =t/oi:S—T — L

30/32

Synchronization trees Languages Conclusion

Languages

@ Languages as synchronization trees: Given language
(H, L), define Is(H, L) = (H, e, L, Tr) with
TIr={(h,a, ha) | ha € H}

@ Extend to functor /s : L — S by Is(A) = (A4, A)
(restriction of * to H)

@ s/:S<L:Isisan adjunction:
@ Co-unit morphisms e) : sl(Is(H,L)) — (H, L) are
identities

@ Universal property: sl(Is(H, L)) LN (H, L)
sl(Aﬁ)T /
si(Y)
= 8/: S L Isis areflection
31/32

Synchronization trees Languages Conclusion

Conclusion

@ Co-reflectioni:S<=T: ts
@ Reflections/:S<=L:Is

@ But the composed functorsjiols: L —T,L«— T :slotsare
not even adjoint!

32/32

