
Category Theory and Functional
Programming

Day 2

7 October 2009

Categories, functors, natural transformations

1 Graphs vs. categories
2 Exercise P-1.1.20.2 (Petur)
3 Transition systems revisited
4 Functors
5 Exercise P-2.1.10.3
6 Exercise ML-1.3.4
7 Natural transformations
8 Exercise P-2.3.11.2 (Mikkel)



Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Graphs

(These are directed multigraphs; to say E ⊆ V × V is
fine as long as there’s at most one edge between any two
points.)

Set of points V
Set of edges E
For each edge e ∈ E , a source src(e) ∈ V and a
target tgt(e) ∈ V
(Write e : x → y if src(e) = x and tgt(e) = y )

For each point x ∈ V , a degenerate edge deg(v) ∈ E

For each e1 : x → y and e2 : y → z, a composite
e2 ◦ e1 : x → z,
with associativity: e3 ◦ (e2 ◦ e1) = (e3 ◦ e2) ◦ e1 whenever
these are defined,
and identities: for all edges e : x → y , e ◦ deg(x) = e and
deg(y) ◦ e = e.

That’s all folks:
V ,E , src : E → V , tgt : E → V

,deg : V → E , ◦ : E ×V E → E

3 / 32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Reflexive graphs

(These are directed multigraphs; to say E ⊆ V × V is
fine as long as there’s at most one edge between any two
points.)

Set of points V
Set of edges E
For each edge e ∈ E , a source src(e) ∈ V and a
target tgt(e) ∈ V
(Write e : x → y if src(e) = x and tgt(e) = y )

For each point x ∈ V , a degenerate edge deg(v) ∈ E

For each e1 : x → y and e2 : y → z, a composite
e2 ◦ e1 : x → z,
with associativity: e3 ◦ (e2 ◦ e1) = (e3 ◦ e2) ◦ e1 whenever
these are defined,
and identities: for all edges e : x → y , e ◦ deg(x) = e and
deg(y) ◦ e = e.

That’s all folks:
V ,E , src : E → V , tgt : E → V ,deg : V → E

, ◦ : E ×V E → E

4 / 32



Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Categories

(These are directed multigraphs; to say E ⊆ V × V is
fine as long as there’s at most one edge between any two
points.)

Set of points V
Set of edges E
For each edge e ∈ E , a source src(e) ∈ V and a
target tgt(e) ∈ V
(Write e : x → y if src(e) = x and tgt(e) = y )

For each point x ∈ V , a degenerate edge deg(v) ∈ E

For each e1 : x → y and e2 : y → z, a composite
e2 ◦ e1 : x → z,
with associativity: e3 ◦ (e2 ◦ e1) = (e3 ◦ e2) ◦ e1 whenever
these are defined,
and identities: for all edges e : x → y , e ◦ deg(x) = e and
deg(y) ◦ e = e.

That’s all folks:
V ,E , src : E → V , tgt : E → V ,deg : V → E , ◦ : E ×V E → E

5 / 32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Categories

(These are directed multigraphs; to say E ⊆ V × V is
fine as long as there’s at most one edge between any two
points.)

Set of objects C0
Set of arrows C1
For each arrow f ∈ C1, a domain dom(f ) ∈ C0 and a
co-domain cod(f ) ∈ C0
(Write f : A→ B if dom(f ) = A and cod(f ) = B)

For each object A ∈ C0, an identity arrow idA ∈ C0

For each f1 : A→ B and f2 : B → C, a composite
f2 ◦ f1 : A→ C,
with associativity: f3 ◦ (f2 ◦ f1) = (f3 ◦ f2) ◦ f1 whenever these
are defined,
and identities: for all arrows f : A→ B, f ◦ idA = f and
idB ◦f = f .

That’s all folks:
C0, C1,dom, cod : C1 → C0, id : C0 → C1, ◦ : C1 ×C0 C1 → C1

6 / 32



Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise P-1.1.20.2 (Petur)

A group (G, ∗,e,−1) is a set G equipped with a binary
operation ∗, a distinguished element e, and a unary
operation −1 such that
(a) (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x , y , z ∈ G,
(b) e ∗ x = x = x ∗ e for all x ∈ G, and
(c) x ∗ x−1 = e = x−1 ∗ x for all x ∈ G.
Show how an arbitrary group can be considered as a
category.

7 / 32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise P-1.1.20.2 (Petur)

A monoid (G, ∗,e

,−1

) is a set G equipped with a binary
operation ∗, a distinguished element e

, and a unary
operation −1

such that
(a) (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x , y , z ∈ G,
(b) e ∗ x = x = x ∗ e for all x ∈ G, and

(c) x ∗ x−1 = e = x−1 ∗ x for all x ∈ G.

Show how an arbitrary monoid can be considered as a
category.

8 / 32



Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

A transition system is a tuple (S, i ,L,Tr) with
Tr ⊆ S × L× S. Goal: Externalize this
A transition system is a graph (S,Tr) with an initial state
i : ∗ → S and a labeling λ : Tr → L
∗ : the one-element set; i : ∗ → S picks out one element of
S
The category of pointed sets: comma category ∗ ↓ Set

objects:

∗

��

A

arrows:

∗

���������

��
9999999

A // B
⇒ objects: sets with a basepoint

arrows: functions which preserve the basepoint

9 / 32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

Transition system without labels = pointed graph
⇒ want comma category ∗ ↓ Graph

Turn one-element set ∗ into graph: add degenerate edge
⇒ the “terminal” reflexive graph:

∗ = x deg(x)ee

The comma category of pointed reflexive graphs ∗ ↓ RGraph:
objects: reflexive graphs with initial state
arrows: graph homomorphisms which preserve the initial
state

= unlabeled transition systems (and functional simulations)

10 / 32



Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

A transition system is a pointed reflexive graph ∗ i−→ (S,Tr)
together with a labeling ` : Tr → L.

Need more externalization
Idea: a set is a graph with one point:

{a,b, c} = xa
%%

b

rr

c

EE

⇒ A transition system is a diagram ∗ i−→ (S,Tr) `−→ (∗,L) in the
category of reflexive graphs.

Forget about internal structure: ∗ i−→ T `−→ GL
(externalization!)

11 / 32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

A morphism of transition systems T = (S, i ,L,Tr),
T ′ = (S′, i ′,L′,Tr ′) is a pair f = (σ, λ) : T → T ′ of functions
σ : S → S′, λ : L→ L′⊥ for which σ(i) = i ′ and

(s1,a, s2) ∈ Tr implies (σ(s1), λ(a), σ(s2)) ∈ Tr ′⊥

Now looks like

∗
i
������� i ′

��
<<<<<

T
σ //

`
��

T ′

`′
��

GL
// G′L

⇒ a diagram in the category of reflexive graphs
(“Pointed arrow category”)

12 / 32



Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Functors

A functor from a category C to a category D consists of a
function F on objects and a function F on arrows

C D

A � F //

f
��

F (A)

F (f )
��

�
F //

B �
F

// F (B)

for which F (idA) = idF (A)

and F (g ◦ f ) = F (g) ◦ F (f ).

Structure-preserving function between categories.

F is full⇔ surjective on arrows
F is faithful⇔ injective on arrows

13 / 32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise P-2.1.10.3

Let M,N be two monoids (groups; preorders) considered as
one-object categories. What are the functors from M to N?

14 / 32



Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise ML-1.3.4

Prove that there is no functor from groups to Abelian groups
which maps each group to its center.

A group G is Abelian if its operation ∗ is commutative;
x ∗ y = y ∗ x for all x ∈ G.
The center Z (G) of a group G is the set of all elements
which commute with all others;

Z (G) = {x ∈ G | ∀y ∈ G : x ∗ y = y ∗ x}

15 / 32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Natural transformations

A natural transformation η : F →̇G between functors
F ,G : C → D is a function from C-objects to D-arrows,
A 7→ ηA : F (A)→ G(A) such that the diagrams

F (A)
ηA //

F (f )
��

G(A)

G(f )
��

F (B) ηB
// G(B)

commute for all arrows f : A→ B in C.

16 / 32



Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise P-2.3.11.2 (Mikkel)

Let P be a preorder (regarded as a category) and C a category.
Let S,T : C → P be functors. Show that there is a unique
natural transformation τ : S →̇ T if and only if S(C) ≤ T (C) for
all C ∈ C.

17 / 32

Adjoint functors

9 Definition
10 Example (Pierce 2.4.1-2)
11 Example: free groups
12 Co-units
13 Examples
14 Special types of adjoints



Definition Examples Co-units Examples Special types of adjoints

Adjoint functors

Definition: Functors F : C � D : G are adjoint if there is a
natural transformation η : IC →̇G ◦ F such that for each arrow
f : X → G(Y ) ∈ C, there is a unique arrow f ] : F (X )→ Y ∈ D
for which the diagram

X
ηX //

f ##GGGGGGGGGG G(F (X ))

G(f ])
��

G(Y )

commutes. This is called the universal property.

F = left adjoint, G = right adjoint
η = unit – transformation from identity functor to G ◦ F

19 / 32

Definition Examples Co-units Examples Special types of adjoints

Example (Pierce 2.4.1-2)

The functor List : Set→ Mon is left adjoint to the forgetful
functor U : Mon→ Set, with unit i : ISet →̇ U ◦ List given by
iS(s) = [s]:

S
iS //

f

""EEEEEEEEEEEEEEEE U(List(S))

U(f ])

��

List(S)
Uoo

f ]

��

Uoo

U(M) MU
oo

Example 2.4.2: length = 1]

Left adjoints to forgetful functors are called free functors
So List(S) is the free monoid on S

20 / 32



Definition Examples Co-units Examples Special types of adjoints

Example: free groups

For a set S, define the free group F (S) on S as follows:
Let W be the set of finite words w = w1w2 . . .wn, with each
wi ∈ S, or wi = s−1 for some s ∈ S. That’s just syntax.
A word w can be reduced if it contains a subword ss−1 or
s−1s. Then w is equivalent to w-with-the-subword-removed.
This defines an equivalence relation on W . The free group
F (S) is the set of equivalence classes of W .
Example:
F ({a,b}) = {ε,a,b,ab,ab−1,a−1b,a−1b−1,ba,ba−1, . . . }

This is functorial, and F is left adjoint to the forgetful functor
U : Group→ Set.

Universal property: S
i //

f ##GGGGGGGGGG U(F (S))

U(f ])
��

U(G)

21 / 32

Definition Examples Co-units Examples Special types of adjoints

Alternative characterizations of adjoints

Functors F : C � D : G are adjoint if

there is a unit η : IC →̇G ◦ F
such that for each arrow
f : X → G(Y ) ∈ C, there is a
unique arrow
f ] : F (X )→ Y ∈ D for which
the diagram

X
ηX //

f ##GGGGGGGGGG G(F (X ))

G(f ])
��

G(Y )

commutes.

there is a co-unit ε : F ◦G →̇ ID
such that for each arrow
g : F (X )→ Y ∈ D, there is a
unique arrow
g∗ : X → G(Y ) ∈ C for which
the diagram

F (G(Y ))
εY // Y

F (X )

F (g∗)

OO

g

;;wwwwwwwwww

commutes.

For F : Set � Mon : G and F : Set � Group : G,
εY ([s1, s2, . . . , sn]) = s1 ∗ s2 ∗ · · · ∗ sn.

22 / 32



Definition Examples Co-units Examples Special types of adjoints

Example RB-6.3.1: floor and ceiling

Z and R are partial orders⇒ categories
The forgetful functor U : Z→ R has
left adjoint Ceil : R→ Z (“smallest integer not smaller
than”) and
right adjoint Floor : R→ Z (“greatest integer not greater
than”)

Adjunction Ceil : R � Z : U has unit ηX = (X ≤ Ceil(X ))
and co-unit εY = (Ceil(Y ) = Y ) (an iso!)

Adjunction U : Z � R : Floor has unit ηX = (X = Floor(X ))
(an iso!) and co-unit εY = (Floor(Y ) ≤ Y )

23 / 32

Definition Examples Co-units Examples Special types of adjoints

Example RB-6.3.4(1): free category on a graph

The free category F (G) on a graph G = (V ,E) has
as objects all points in V
as arrows all paths in G: all sequences (e1,e2, . . . ,en) of
edges in E with tgt(ei) = src(ei+1)

and composition of arrows is concatenation of paths

⇒ left adjoint to the forgetful functor: F : Graph � Cat : U

– Like the adjunction Set � Mon, but many-object!

24 / 32



Definition Examples Co-units Examples Special types of adjoints

Special types of adjoints

An adjunction F : C � D : G is
a reflection if G is fully faithful
⇔ all arrows εY : F (G(Y ))→ Y are isos

a co-reflection if F is fully faithful
⇔ all arrows ηX : X → G(F (X )) are isos

an adjoint equivalence if it is both a reflection and a
co-reflection

25 / 32

Transition systems, synchronization trees, languages

15 Synchronization trees
16 Languages
17 Conclusion



Synchronization trees Languages Conclusion

Synchronization trees

Recall: A transition system is a tuple (S, i ,L,Tr) with
Tr ⊆ S × L× S. (Back to the old notation!)
A synchronization tree is a transition system in which there
is precisely one path from i to any state s ∈ S:

every state is reachable
acyclic
no joins

Recall: A morphism of transition systems is a pair
(σ, λ) : (S, i ,L,Tr)→ (S′, i ′,L′,Tr ′) of functions σ : S → S′,
λ : L→ L′⊥ for which σ(i) = i ′ and

(s1,a, s2) ∈ Tr implies (σ(s1), λ(a), σ(s2)) ∈ Tr ′⊥

T: category of transition systems
S: fully faithful subcategory of synchronization trees

27 / 32

Synchronization trees Languages Conclusion

Synchronization trees

i : S→ T is fully faithful
Right adjoint: unfolding:
Given transition system T = (S, i ,L,Tr), define
synchronization tree ts(T ) = (S′, i ′,L,Tr ′) (same labels) by

S′ = set of all paths in T
i ′ = () (empty path)
Tr ′ = one-step continuations of paths:

Tr ′ = {((s1, . . . , sk ),a, (s1, . . . , sk , sk+1) | (sk ,a, sk+1) ∈ Tr}
Co-unit morphisms εT : i(ts(T ))→ T given as
εT = (ϕ, idL), with

ϕ(()) = i ϕ(s1, . . . , sn) = sn

Universal property: i(ts(T ))
εT // T

i(Y )

i(f∗)

OO

f

;;xxxxxxxxx

28 / 32



Synchronization trees Languages Conclusion

Synchronization trees

⇒ co-reflection i : S � T : ts

⇒ all unit morphisms are isos.
That is, for all synchronization trees Y , the morphism
ηY : Y → ts(i(Y )) is an iso.
Any synchronization tree is isomorphic to its unfolding.

29 / 32

Synchronization trees Languages Conclusion

Languages

A language over a labeling L is a pair (H,L) with H ⊆ L∗

prefix-closed: ∀s ∈ L∗ ∀a ∈ L : sa ∈ H ⇒ s ∈ H
Morphisms of languages (H,L)→ (H ′,L′): partial functions
λ : L→ L′⊥ for which λ∗(w) ∈ H ′ for all w ∈ H

⇒ category of languages L

The language of a transition system T = (S, i ,L,Tr): usual
stuff: tl(T ) = (H,L) with

H = {a1a2 . . . an | ∃ path i a1−→ s1
a2−→ · · · an−→ sn in T}

Extend to functor tl : T→ L by sl(σ, λ) = λ

Composition gives functor sl = tl ◦ i : S→ T→ L

30 / 32



Synchronization trees Languages Conclusion

Languages

Languages as synchronization trees: Given language
(H,L), define ls(H,L) = (H, ε,L,Tr) with
Tr = {(h,a,ha) | ha ∈ H}
Extend to functor ls : L→ S by ls(λ) = (λ∗�H , λ)

(restriction of λ∗ to H)

sl : S � L : ls is an adjunction:
Co-unit morphisms ε(H,L) : sl(ls(H,L))→ (H,L) are
identities

Universal property: sl(ls(H,L))
id // (H,L)

sl(Y )

sl(λ])

OO

λ

88qqqqqqqqqq

⇒ sl : S � L : ls is a reflection

31 / 32

Synchronization trees Languages Conclusion

Conclusion

Co-reflection i : S � T : ts
Reflection sl : S � L : ls
But the composed functors i ◦ ls : L→ T, L← T : sl ◦ ts are
not even adjoint!

32 / 32


