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P
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D
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C
ategories,functors,naturaltransform

ations

1
G

raphs
vs.categories

2
E

xercise
P

-1.1.20.2
(Petur)

3
Transition

system
s

revisited
4

Functors
5

E
xercise

P
-2.1.10.3

6
E

xercise
M

L-1.3.4
7

N
aturaltransform

ations
8

E
xercise

P
-2.3.11.2

(M
ikkel)

G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

G
raphs

(These
are

directed
m

ultigraphs;
to

say
E
⊆

V
×

V
is

fine
as

long
as

there’s
atm

ostone
edge

betw
een

any
tw

o
points.)

S
etofpoints

V
S

etofedges
E

Foreach
edge

e∈
E

,a
source

src(e
)∈

V
and

a
targettgt(e

)∈
V

(W
rite

e
:x
→

y
ifsrc(e

)
=

x
and

tgt(e
)

=
y)

Foreach
pointx

∈
V

,a
degenerate

edge
deg

(v
)∈

E

Foreach
e

1
:x
→

y
and

e
2

:y
→

z,a
com

posite
e

2 ◦
e

1
:x
→

z,
w

ith
associativity:

e
3 ◦

(e
2 ◦

e
1 )

=
(e

3 ◦
e

2 )◦
e

1
w

henever
these

are
defined,

and
identities:

foralledges
e

:x
→

y,e◦
deg

(x
)

=
e

and
deg

(y
)◦

e
=

e.

That’s
allfolks:

V
,E
,src

:E
→

V
,tgt

:E
→

V

,deg
:V
→

E
,◦

:E
×

V
E
→

E
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

R
eflexive

graphs

(These
are

directed
m

ultigraphs;
to

say
E
⊆

V
×

V
is

fine
as

long
as

there’s
atm

ostone
edge

betw
een

any
tw

o
points.)

S
etofpoints

V
S

etofedges
E

Foreach
edge

e∈
E

,a
source

src(e
)∈

V
and

a
targettgt(e

)∈
V

(W
rite

e
:x
→

y
ifsrc(e

)
=

x
and

tgt(e
)

=
y)

Foreach
pointx

∈
V

,a
degenerate

edge
deg

(v
)∈

E

Foreach
e

1
:x
→

y
and

e
2

:y
→

z,a
com

posite
e

2 ◦
e

1
:x
→

z,
w

ith
associativity:

e
3 ◦

(e
2 ◦

e
1 )

=
(e

3 ◦
e

2 )◦
e

1
w

henever
these

are
defined,

and
identities:

foralledges
e

:x
→

y,e◦
deg

(x
)

=
e

and
deg

(y
)◦

e
=

e.

That’s
allfolks:

V
,E
,src

:E
→

V
,tgt

:E
→

V
,deg

:V
→

E

,◦
:E
×

V
E
→

E
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

C
ategories

(These
are

directed
m

ultigraphs;
to

say
E
⊆

V
×

V
is

fine
as

long
as

there’s
atm

ostone
edge

betw
een

any
tw

o
points.)

S
etofpoints

V
S

etofedges
E

Foreach
edge

e∈
E

,a
source

src(e
)∈

V
and

a
targettgt(e

)∈
V

(W
rite

e
:x
→

y
ifsrc(e

)
=

x
and

tgt(e
)

=
y)

Foreach
pointx

∈
V

,a
degenerate

edge
deg

(v
)∈

E

Foreach
e

1
:x
→

y
and

e
2

:y
→

z,a
com

posite
e

2 ◦
e

1
:x
→

z,
w

ith
associativity:

e
3 ◦

(e
2 ◦

e
1 )

=
(e

3 ◦
e

2 )◦
e

1
w

henever
these

are
defined,

and
identities:

foralledges
e

:x
→

y,e◦
deg

(x
)

=
e

and
deg

(y
)◦

e
=

e.

That’s
allfolks:

V
,E
,src

:E
→

V
,tgt

:E
→

V
,deg

:V
→

E
,◦

:E
×

V
E
→

E
5
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

C
ategories

(These
are

directed
m

ultigraphs;
to

say
E
⊆

V
×

V
is

fine
as

long
as

there’s
atm

ostone
edge

betw
een

any
tw

o
points.)

S
etofobjectsC

0
S

etofarrow
sC

1
Foreach

arrow
f∈
C

1 ,a
dom

ain
dom

(f)∈
C

0
and

a
co-dom

ain
cod

(f)∈
C

0
(W

rite
f

:A
→

B
ifdom

(f)
=

A
and

cod
(f)

=
B

)

Foreach
objectA

∈
C

0 ,an
identity

arrow
id

A ∈
C

0

Foreach
f1

:A
→

B
and

f2
:B
→

C
,a

com
posite

f2 ◦
f1

:A
→

C
,

w
ith

associativity:f3 ◦
(f2 ◦

f1 )
=

(f3 ◦
f2 )◦

f1
w

heneverthese
are

defined,
and

identities:
forallarrow

s
f

:A
→

B
,f◦

id
A

=
f

and
id

B ◦f
=

f.

That’s
allfolks:

C
0 ,C

1 ,dom
,cod

:C
1 →

C
0 ,id

:C
0 →

C
1 ,◦

:C
1 ×
C

0 C
1 →

C
1

6
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

E
xercise

P
-1.1.20.2

(Petur)

A
group

(G
,∗,e

, −
1)

is
a

setG
equipped

w
ith

a
binary

operation∗,a
distinguished

elem
ente,and

a
unary

operation
−

1
such

that
(a)

(x∗
y
)∗

z
=

x∗
(y∗

z
)

forallx
,y
,z∈

G
,

(b)
e∗

x
=

x
=

x∗
e

forallx
∈

G
,and

(c)
x∗

x −
1

=
e

=
x −

1∗
x

forallx
∈

G
.

S
how

how
an

arbitrary
group

can
be

considered
as

a
category.

7
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

E
xercise

P
-1.1.20.2

(Petur)

A
m

onoid
(G
,∗
,e

, −
1

)
is

a
setG

equipped
w

ith
a

binary
operation∗,a

distinguished
elem

ente

,and
a

unary
operation

−
1

such
that

(a)
(x∗

y
)∗

z
=

x∗
(y∗

z
)

forallx
,y
,z∈

G
,

(b)
e∗

x
=

x
=

x∗
e

forallx
∈

G
,and

(c)
x∗

x −
1

=
e

=
x −

1∗
x

forallx
∈

G
.

S
how

how
an

arbitrary
m

onoid
can

be
considered

as
a

category.
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

Transition
system

s
revisited

A
transition

system
is

a
tuple

(S
,i,L

,Tr)
w

ith
Tr⊆

S
×

L×
S

.
G

oal:
E

xternalize
this

A
transition

system
is

a
graph

(S
,Tr)

w
ith

an
initialstate

i
:∗→

S
and

a
labeling

λ
:Tr→

L
∗

:
the

one-elem
entset;i

:∗→
S

picks
outone

elem
entof

SThe
category

ofpointed
sets:

com
m

a
category∗↓

S
et

objects:

∗��

A

arrow
s:

∗

��� � � � � � �

�� 9 9 9 9 9 9 9

A
//B

⇒
objects:

sets
w

ith
a

basepoint
arrow

s:
functions

w
hich

preserve
the

basepoint

9
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

Transition
system

s
revisited

Transition
system

w
ithoutlabels

=
pointed

graph
⇒

w
antcom

m
a

category∗↓
G

raph
Turn

one-elem
entset∗

into
graph:

add
degenerate

edge
⇒

the
“term

inal”reflexive
graph:

∗
=

x
deg

(x
)

ee

The
com

m
a

category
ofpointed

reflexive
graphs∗↓

R
G

raph:
objects:

reflexive
graphs

w
ith

initialstate
arrow

s:
graph

hom
om

orphism
s

w
hich

preserve
the

initial
state

=
unlabeled

transition
system

s
(and

functionalsim
ulations)
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

Transition
system

s
revisited

A
transition

system
is

a
pointed

reflexive
graph∗

i−→
(S
,Tr)

togetherw
ith

a
labeling

`
:Tr→

L.N
eed

m
ore

externalization
Idea:

a
setis

a
graph

w
ith

one
point:

{a
,b
,c}

=
x

a
%%

b

rr

c EE

⇒
A

transition
system

is
a

diagram
∗

i−→
(S
,Tr)

`−→
(∗
,L

)
in

the
category

ofreflexive
graphs.

Forgetaboutinternalstructure:∗
i−→

T
`−→

G
L

(externalization!)
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

Transition
system

s
revisited

A
m

orphism
oftransition

system
s

T
=

(S
,i,L

,Tr),
T
′
=

(S
′,i ′,L ′,Tr ′)

is
a

pairf
=

(σ
,λ

)
:T
→

T
′offunctions

σ
:S
→

S
′,
λ

:L→
L ′⊥

forw
hich

σ
(i)

=
i ′and

(s
1 ,a

,s
2 )∈

Tr
im

plies
(σ

(s
1 ),λ

(a
),σ

(s
2 ))∈

Tr ′⊥

N
ow

looks
like

∗
i��� � � � �

i ′�� < < < < <

T
σ

//

`
��

T
′` ′

��

G
L

//G
′L

⇒
a

diagram
in

the
category

ofreflexive
graphs

(“Pointed
arrow

category”)
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/32



G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

FunctorsA
functorfrom

a
categoryC

to
a

categoryD
consists

ofa
function

F
on

objects
and

a
function

F
on

arrow
s

C
D

A
�

F
//

f
��

F
(A

)F
(f)

��

�
F

//

B
�

F
//F

(B
)

forw
hich

F
(id

A
)

=
id

F
(A

)

and
F

(g◦
f)

=
F

(g
)◦

F
(f).

S
tructure-preserving

function
betw

een
categories.

F
is

full⇔
surjective

on
arrow

s
F

is
faithful⇔

injective
on

arrow
s

13
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

E
xercise

P
-2.1.10.3

LetM
,N

be
tw

o
m

onoids
(groups;preorders)considered

as
one-objectcategories.

W
hatare

the
functors

from
M

to
N

?
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

E
xercise

M
L-1.3.4

P
rove

thatthere
is

no
functorfrom

groups
to

A
belian

groups
w

hich
m

aps
each

group
to

its
center.

A
group

G
is

A
belian

ifits
operation∗

is
com

m
utative;

x∗
y

=
y∗

x
forallx

∈
G

.
The

centerZ
(G

)
ofa

group
G

is
the

setofallelem
ents

w
hich

com
m

ute
w

ith
allothers;

Z
(G

)
=
{x
∈

G
|∀y
∈

G
:x∗

y
=

y∗
x}

15
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

N
aturaltransform

ations

A
naturaltransform

ation
η

:F
→̇

G
betw

een
functors

F
,G

:C→
D

is
a

function
from

C-objects
toD

-arrow
s,

A
7→

η
A

:F
(A

)→
G

(A
)

such
thatthe

diagram
s

F
(A

)
η

A
//

F
(f)

��

G
(A

)G
(f)

��

F
(B

)
η

B
//G

(B
)

com
m

ute
forallarrow

s
f

:A
→

B
inC.

16
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G
raphs

vs.categories
E

xercise
Transition

system
s

Functors
E

xercises
N

aturaltransform
ations

E
xercise

E
xercise

P
-2.3.11.2

(M
ikkel)

LetP
be

a
preorder(regarded

as
a

category)andC
a

category.
LetS

,T
:C→

P
be

functors.
S

how
thatthere

is
a

unique
naturaltransform

ation
τ

:S
→̇

T
ifand

only
ifS

(C
)≤

T
(C

)
for

allC
∈
C.

17
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A
djointfunctors

9
D

efinition
10

E
xam

ple
(P

ierce
2.4.1-2)

11
E

xam
ple:

free
groups

12
C

o-units
13

E
xam

ples
14

S
pecialtypes

ofadjoints

D
efinition

E
xam

ples
C

o-units
E

xam
ples

S
pecialtypes

ofadjoints

A
djointfunctors

D
efinition:

Functors
F

:C
�
D

:G
are

adjointifthere
is

a
naturaltransform

ation
η

:IC →̇
G
◦

F
such

thatforeach
arrow

f
:X
→

G
(Y

)∈
C,there

is
a

unique
arrow

f
]
:F

(X
)→

Y
∈
D

forw
hich

the
diagram

X
η

X
//

f
##

G G G G G G G G G G
G

(F
(X

))

G
(f

])
��

G
(Y

)

com
m

utes.
This

is
called

the
universalproperty.

F
=

leftadjoint,G
=

rightadjoint
η

=
unit–

transform
ation

from
identity

functorto
G
◦

F

19
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D
efinition

E
xam

ples
C

o-units
E

xam
ples

S
pecialtypes

ofadjoints

E
xam

ple
(P

ierce
2.4.1-2)

The
functorList

:S
et→

M
on

is
leftadjointto

the
forgetful

functorU
:M

on
→

S
et,w

ith
uniti

:IS
et →̇

U
◦

Listgiven
by

iS
(s

)
=

[s
]:

S
iS

//

f

""
E E E E E E E E E E E E E E E E

U
(List(S

))

U
(f

])

��

List(S
)

U
oo

f
]

��

U
oo

U
(M

)
M

U
oo

E
xam

ple
2.4.2:

length
=

1
]

Leftadjoints
to

forgetfulfunctors
are

called
free

functors
S

o
List(S

)
is

the
free

m
onoid

on
S

20
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D
efinition

E
xam

ples
C

o-units
E

xam
ples

S
pecialtypes

ofadjoints

E
xam

ple:
free

groups

Fora
setS

,define
the

free
group

F
(S

)
on

S
as

follow
s:

LetW
be

the
setoffinite

w
ords

w
=

w
1 w

2
...w

n ,w
ith

each
w

i ∈
S

,orw
i
=

s −
1

forsom
e

s∈
S

.
That’s

justsyntax.
A

w
ord

w
can

be
reduced

ifitcontains
a

subw
ord

ss −
1

or
s −

1s.
Then

w
is

equivalentto
w

-w
ith-the-subw

ord-rem
oved.

This
defines

an
equivalence

relation
on

W
.

The
free

group
F

(S
)

is
the

setofequivalence
classes

ofW
.

E
xam

ple:
F

({a
,b})

=
{
ε,a

,b
,ab

,ab −
1,a −

1b
,a −

1b −
1,ba

,ba −
1,...}

This
is

functorial,and
F

is
leftadjointto

the
forgetfulfunctor

U
:G

roup
→

S
et.

U
niversalproperty:

S
i
//

f
##

G G G G G G G G G G
U

(F
(S

))

U
(f

])
��

U
(G

)
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D
efinition

E
xam

ples
C

o-units
E

xam
ples

S
pecialtypes

ofadjoints

A
lternative

characterizations
ofadjoints

Functors
F

:C
�
D

:G
are

adjointif

there
is

a
unit

η
:IC →̇

G
◦

F
such

thatforeach
arrow

f
:X
→

G
(Y

)∈
C,there

is
a

unique
arrow

f
]
:F

(X
)→

Y
∈
D

forw
hich

the
diagram

X
η

X
//

f
##

G G G G G G G G G G
G

(F
(X

))

G
(f

])
��

G
(Y

)

com
m

utes.

there
is

a
co-unit

ε
:F
◦

G
→̇

ID
such

thatforeach
arrow

g
:F

(X
)→

Y
∈
D

,there
is

a
unique

arrow
g ∗

:X
→

G
(Y

)∈
C

forw
hich

the
diagram

F
(G

(Y
))
ε

Y
//Y

F
(X

)

F
(g ∗

)

OO

g

;;
wwwwwwwwww

com
m

utes.

ForF
:S

et�
M

on
:G

and
F

:S
et�

G
roup

:G
,

ε
Y
([s

1 ,s
2 ,...,s

n ])
=

s
1 ∗

s
2 ∗···∗

s
n .
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D
efinition

E
xam

ples
C

o-units
E

xam
ples

S
pecialtypes

ofadjoints

E
xam

ple
R

B
-6.3.1:

floorand
ceiling

Z
and

R
are

partialorders⇒
categories

The
forgetfulfunctorU

:
Z
→
R

has
leftadjointC

eil:
R
→
Z

(“sm
allestintegernotsm

aller
than”)and
rightadjointFloor

:
R
→
Z

(“greatestintegernotgreater
than”)

A
djunction

C
eil:

R
�
Z

:U
has

unit
η

X
=

(X
≤

C
eil(X

))
and

co-unit
ε

Y
=

(C
eil(Y

)
=

Y
)

(an
iso!)

A
djunction

U
:
Z

�
R

:Floorhas
unit

η
X

=
(X

=
Floor(X

))
(an

iso!)
and

co-unit
ε

Y
=

(Floor(Y
)≤

Y
)
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D
efinition

E
xam

ples
C

o-units
E

xam
ples

S
pecialtypes

ofadjoints

E
xam

ple
R

B
-6.3.4(1):

free
category

on
a

graph

The
free

category
F

(G
)

on
a

graph
G

=
(V
,E

)
has

as
objects

allpoints
in

V
as

arrow
s

allpaths
in

G
:

allsequences
(e

1 ,e
2 ,...,e

n )
of

edges
in

E
w

ith
tgt(e

i )
=

src(e
i+

1 )

and
com

position
ofarrow

s
is

concatenation
ofpaths

⇒
leftadjointto

the
forgetfulfunctor:

F
:G

raph
�

C
at

:U

–
Like

the
adjunction

S
et�

M
on,butm

any-object!
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D
efinition

E
xam

ples
C

o-units
E

xam
ples

S
pecialtypes

ofadjoints

S
pecialtypes

ofadjoints

A
n

adjunction
F

:C
�
D

:G
is

a
reflection

ifG
is

fully
faithful

⇔
allarrow

s
ε

Y
:F

(G
(Y

))→
Y

are
isos

a
co-reflection

ifF
is

fully
faithful

⇔
allarrow

s
η

X
:X
→

G
(F

(X
))

are
isos

an
adjointequivalence

ifitis
both

a
reflection

and
a

co-reflection
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Transition
system

s,synchronization
trees,languages

15
S

ynchronization
trees

16
Languages

17
C

onclusion

S
ynchronization

trees
Languages

C
onclusion

S
ynchronization

trees

R
ecall:

A
transition

system
is

a
tuple

(S
,i,L

,Tr)
w

ith
Tr⊆

S
×

L×
S

.
(B

ack
to

the
old

notation!)
A

synchronization
tree

is
a

transition
system

in
w

hich
there

is
precisely

one
path

from
ito

any
state

s∈
S

:
every

state
is

reachable
acyclic
no

joins
R

ecall:
A

m
orphism

oftransition
system

s
is

a
pair

(σ
,λ

)
:
(S
,i,L

,Tr)→
(S
′,i ′,L ′,Tr ′)

offunctions
σ

:S
→

S
′,

λ
:L→

L ′⊥
forw

hich
σ
(i)

=
i ′and

(s
1 ,a

,s
2 )∈

Tr
im

plies
(σ

(s
1 ),λ

(a
),σ

(s
2 ))∈

Tr ′⊥

T:category
oftransition

system
s

S
:fully

faithfulsubcategory
ofsynchronization

trees
27
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S
ynchronization

trees
Languages

C
onclusion

S
ynchronization

trees

i
:S
→

T
is

fully
faithful

R
ightadjoint:

unfolding:
G

iven
transition

system
T

=
(S
,i,L

,Tr),define
synchronization

tree
ts

(T
)

=
(S
′,i ′,L

,Tr ′)
(sam

e
labels)by

S
′
=

setofallpaths
in

T
i ′

=
()

(em
pty

path)
Tr ′

=
one-step

continuations
ofpaths:

Tr ′
=
{((s

1 ,...,s
k ),a

,(s
1 ,...,s

k ,s
k
+

1 )|
(s

k ,a
,s

k
+

1 )∈
Tr}

C
o-unitm

orphism
s
ε

T
:i(ts

(T
))→

T
given

as
ε

T
=

(ϕ
,id

L ),w
ith

ϕ
(())

=
i

ϕ
(s

1 ,...,s
n )

=
s

n

U
niversalproperty:

i(ts
(T

))
ε

T
//T

i(Y
)

i(f ∗
)

OO

f

;;
xxxxxxxxx
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S
ynchronization

trees
Languages

C
onclusion

S
ynchronization

trees

⇒
co-reflection

i
:S

�
T

:ts

⇒
allunitm

orphism
s

are
isos.

Thatis,forallsynchronization
trees

Y
,the

m
orphism

η
Y

:Y
→

ts
(i(Y

))
is

an
iso.

A
ny

synchronization
tree

is
isom

orphic
to

its
unfolding.
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S
ynchronization

trees
Languages

C
onclusion

Languages

A
language

overa
labeling

L
is

a
pair

(H
,L

)
w

ith
H
⊆

L ∗

prefix-closed:∀s∈
L ∗∀a∈

L
:sa∈

H
⇒

s∈
H

M
orphism

s
oflanguages

(H
,L

)→
(H
′,L ′):partialfunctions

λ
:L→

L ′⊥
forw

hich
λ ∗(w

)∈
H
′forallw

∈
H

⇒
category

oflanguages
L

The
language

ofa
transition

system
T

=
(S
,i,L

,Tr):
usual

stuff:
tl(T

)
=

(H
,L

)
w

ith

H
=
{a

1 a
2
...a

n |∃
path

i
a

1
−→

s
1

a
2
−→
···

a
n
−→

s
n

in
T}

E
xtend

to
functortl

:T
→

L
by

sl(σ
,λ

)
=
λ

C
om

position
gives

functorsl
=

tl◦
i
:S
→

T
→

L
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S
ynchronization

trees
Languages

C
onclusion

Languages

Languages
as

synchronization
trees:

G
iven

language
(H
,L

),define
ls

(H
,L

)
=

(H
,ε,L

,Tr)
w

ith
Tr

=
{(h

,a
,ha

)|ha∈
H}

E
xtend

to
functorls

:L
→

S
by

ls
(λ

)
=

(λ ∗�H
,λ

)
(restriction

of
λ ∗

to
H

)

sl
:S

�
L

:ls
is

an
adjunction:

C
o-unitm

orphism
s
ε
(H
,L

)
:sl(ls

(H
,L

))→
(H
,L

)
are

identities

U
niversalproperty:

sl(ls
(H
,L

))
id

//(H
,L

)

sl(Y
)

sl(λ
])

OO

λ

88
qqqqqqqqqq

⇒
sl

:S
�

L
:ls

is
a

reflection
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S
ynchronization

trees
Languages

C
onclusion

C
onclusion

C
o-reflection

i
:S

�
T

:ts
R

eflection
sl

:S
�

L
:ls

B
utthe

com
posed

functors
i◦

ls
:L
→

T,L
←

T
:sl◦

ts
are

noteven
adjoint!

32
/32


