Category Theory and Functional
Programming

Day 2

7 October 2009

Categories, functors, natural transformations

Graphs vs. categories

Exercise P-1.1.20.2 (Petur)
Transition systems revisited

Functors

Exercise P-2.1.10.3

Exercise ML-1.3.4

Natural transformations

Exercise P-2.3.11.2 (Mikkel)

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Graphs

@ Set of points V

@ Setofedges E

@ For each edge e € E, a source src(e) € V and a
target tgt(e) € V

@ (Write e: x — y if src(e) = x and tgt(e) = y)

(These are directed multigraphs; to say E C V x V is
fine as long as there’s at most one edge between any two
points.)

@ That'’s all folks:
V.E,src:E— V igt: E—V

3/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Reflexive graphs

@ Set of points V

@ Set of edges E

@ For each edge e € E, a source src(e) € V and a
target tgt(e) € V

@ (Write e: x — y if src(e) = x and fgt(e) = y)

@ For each point x € V, a degenerate edge deg(v) € E

@ That'’s all folks:
V.E,src:E— V igt:E— V,deg: V— E

4/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise
Categories
@ Set of points V
@ Set of edges E
@ For each edge e € E, a source src(e) € V and a
target tgt(e) € V
@ (Write e: x — y if src(e) = x and fgt(e) = y)
@ For each point x € V, a degenerate edge deg(v) € E
@ Foreach ey : x — yand e : y — z, a composite
€xo@1 X — 2,
@ with associativity: e3 o (e 0 €1) = (€3 0 €2) o €1 whenever
these are defined,
@ and identities: for all edges e : x — y, eodeg(x) = e and
deg(y)ce=ce.
@ That's all folks:
V.E;src: E—-V,igt:E—V,deg: V—E o:ExyE—E
5/32
Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise
Categories
@ Set of objects Cy
@ Set of arrows C4
@ For each arrow f € Cy, a domain dom(f) € Co and a
co-domain cod(f) € Cy
@ (Write f : A— B if dom(f) = A and cod(f) = B)
@ For each object A € Cy, an identity arrow ids € Cy
@ Foreachf;: A— Band f>: B— C, a composite
foofy: A— C,
@ with associativity: fyo (f 0 fi) = (f3 0 f) o f; whenever these
are defined,
@ and identities: for all arrows f : A — B, foidg = f and
idgof = f.
@ That’s all folks:

Q?QTQOS“OOQ”QA lQou_Q”QolQTo“ﬁ; X C1 — Cq

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise P-1.1.20.2 (Petur)

Agroup (G, *, e, 1) is aset G equipped with a binary
operation x, a distinguished element e, and a unary
operation ~' such that

(@) (xxy)xz=xx(yx2z)foralx,y,z e G,
(b) exx=x=xxeforall x € G, and
() xxx '=e=x"T«xxforall x € G.

Show how an arbitrary group can be considered as a
category.

7/32
Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise
Exercise P-1.1.20.2 (Petur)
A monoid (G, *,e) is a set G equipped with a binary
operation x, a distinguished element e
such that
(@) (xxy)xz=xx(yx2z)forallx,y,z € G,
(b) exx=x=xxeforall x € G, and
Show how an arbitrary monoid can be considered as a
category.
8/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

@ A transition system is a tuple (S, i, L, Tr) with
TrCcSxLxS. Goal: Externalize this

@ A transition system is a graph (S, Tr) with an initial state
i:x— Sandalabeling A: Tr — L

@ x : the one-element set; i : x — S picks out one element of
S

@ The category of pointed sets: comma category = | Set
*

*
° o_u_.moﬁm”% arrows: \ /

A A—B

= objects: sets with a basepoint
arrows: functions which preserve the basepoint

9/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

@ Transition system without labels = pointed graph

= want comma category | Graph

@ Turn one-element set * into graph: add degenerate edge
= the “terminal” reflexive graph:

* = X U deg(x)
@ The comma category of pointed reflexive graphs * | RGraph:

@ objects: reflexive graphs with initial state
arrows: graph homomorphisms which preserve the initial
state

= unlabeled transition systems (and functional simulations)

10/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Transition systems revisited

@ A transition system is a pointed reflexive graph = 4, (S, Tr)
together with a labeling £ : Tr — L.
Need more externalization

@ |dea: a set is a graph with one point: b

~
{a,b,c} = mﬂx“\

C
c
= A transition system is a diagram 4 (S, Tr) LN (*, L) in the
category of reflexive graphs.

@ Forget about internal structure: x Lrs G,
(externalization!)

11/32
Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise
Transition systems revisited
@ A morphism of transition systems T = (S, i, L, Tr),
T'= (8, L, T)isapair f=(o,\): T — T of functions
0:5— 8, \:L— L forwhicho(i) =/ and
(s1,a.52) € Tr implies (o(s1), Ma),o(s2)) € Tr}
*
VRN
® Now looks like ~T———T’
{)
G —— G
= adiagram in the category of reflexive graphs
@ (“Pointed arrow category”)
12/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Functors

@ A functor from a category C to a category D consists of a
function F on objects and a function F on arrows

e for which F(id4) = idga)
@ and F(gof) = F(g)o F(f).

@ Structure-preserving function between categories.

@ Fis full & surjective on arrows
@ Fis faithful < injective on arrows

13/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise P-2.1.10.3

Let M, N be two monoids (groups; preorders) considered as
one-object categories. What are the functors from M to N?

14/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Exercise ML-1.3.4

Prove that there is no functor from groups to Abelian groups
which maps each group to its center.

@ A group G is Abelian if its operation x is commutative;
xxy=yxxforall x € G.

@ The center Z(G) of a group G is the set of all elements
which commute with all others;

Z(G)={xeG|VyeG:xxy=y=*x}

15/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Natural transformations

A natural transformation n : F - G between functors
F,G:C — Dis a function from C-objects to D-arrows,
A — na:F(A) — G(A) such that the diagrams

F(A) -2 G(A)

\..S% %«QS

F(B) —— G(B)

commute for all arrows f: A — BinC.

16/32

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise Definition Examples Co-units Examples Special types of adjoints

Exercise P-2.3.11.2 (Mikkel) Adjoint functors

Definition: Functors F : C = D : G are adjoint if there is a
natural transformation 1 : I -~ G o F such that for each arrow
f: X — G(Y) € C, there is a unique arrow f* : F(X) — Y € D
for which the diagram

Let PP be a preorder (regarded as a category) and C a category. nx

Let S, T : C — P be functors. Show that there is a unique X G(F (X))
natural transformation 7 : S = Tif and only if S(C) < T(C) for : TQ:
all C eC. G(Y)

commutes. This is called the universal property.

@ F = left adjoint, G = right adjoint
@ 1 = unit — transformation from identity functorto Go F

17/32 19/32

Definition Examples Co-units Examples Special types of adjoints

Adjoint functors
Example (Pierce 2.4.1-2)

The functor List : Set — Mon is left adjoint to the forgetful
functor U : Mon — Set, with unit / : Iget — U o List given by

o . is(s) = [sl:

g oefiniion S— S, uList(8)) Y List(S)
W) Example (Pierce 2.4.1-2)

W) Example: free groups

© Co-units) e U "
&) Examples

&) Special types of adjoints U(M) —M

@ Example 2.4.2: length = 1*
@ Left adjoints to forgetful functors are called free functors
@ So List(S) is the free monoid on S

20/32

Definition Examples Co-units Examples Special types of adjoints

Example: free groups

For a set S, define the free group F(S) on S as follows:
@ Let W be the set of finite words w = wyws . .. wp, with each
w; € S,orw; =s 'forsomese S. That’s just syntax.
@ A word w can be reduced if it contains a subword ss~ or
s~'s. Then w is equivalent to w-with-the-subword-removed.
@ This defines an equivalence relation on W. The free group
F(S) is the set of equivalence classes of W.
@ Example:
F({a,b}) = {c,a,b,ab,ab~",a'b,a b~ baba’,...}
This is functorial, and F is left adjoint to the forgetful functor
U : Group — Set.

@ Universal property: S — U(F(S))

> %EE
U(G)

21/32

Definition Examples Co-units Examples Special types of adjoints

Alternative characterizations of adjoints

Functors F : C = D : G are adjoint if
thereisaunitn: lp - Go F thereisaco-unite: Fo G—= Ip

such that for each arrow such that for each arrow
f:X— G(Y)eC,thereisa g:F(X)— Y eD,thereisa
unique arrow unique arrow
f': F(X) — Y eDforwhich g*:X — G(Y) € C for which
the diagram the diagram

X —X G(F(X)) F(G(Y)ZX— Yy

p qu Im*% 9
G(Y) F(X)

commutes. commutes.

@ For F:Set = Mon : Gand F : Set = Group : G,
ey([S1,82,...,8n]) = St % Sp % -+ x Sp.

22/32

Definition Examples Co-units Examples Special types of adjoints

Example RB-6.3.1: floor and ceiling

@ 7 and R are partial orders = categories
@ The forgetful functor U : Z — R has
@ left adjoint Ceil : R — Z (“smallest integer not smaller
than”) and
@ right adjoint Floor : R — 7Z (“greatest integer not greater
than”)
@ Adjunction Ceil : R = Z : U has unit nx = (X < Cell(X))
and co-unitey = (Ceil(Y) = Y) (an iso!)
@ Adjunction U : Z = R : Floor has unit ny = (X = Floor(X))
(an iso!) and co-unit ey = (Floor(Y) < Y)
23/32
Definition Examples Co-units Examples Special types of adjoints

Example RB-6.3.4(1): free category on a graph

The free category F(G) on a graph G= (V, E) has
@ as objects all points in V
@ as arrows all paths in G: all sequences (ey, €, ..., e,) of
edges in E with tgt(e;) = src(ej; 1)
@ and composition of arrows is concatenation of paths
= left adjoint to the forgetful functor: F : Graph = Cat : U

— Like the adjunction Set = Mon, but many-object!

24/32

Definition Examples Co-units Examples Special types of adjoints

Special types of adjoints

An adjunction F: C S D: Gis

@ a reflection if G is fully faithful
< allarrows ey : F(G(Y)) — Y are isos

@ a co-reflection if F is fully faithful
< all arrows nx : X — G(F(X)) are isos

@ an adjoint equivalence if it is both a reflection and a
co-reflection

25/32

Transition systems, synchronization trees, languages

Synchronization trees
Languages
Conclusion

Synchronization trees Languages Conclusion

Synchronization trees

@ Recall: A transition system is a tuple (S, i, L, Tr) with
TrCSxLxS. (Backto the old notation!)
@ A synchronization tree is a transition system in which there
is precisely one path from i to any state s € S:
e every state is reachable
e acyclic
@ no joins
@ Recall: A morphism of transition systems is a pair
(o, A\): (S,i, L, Tr) — (S, ", L', Tr') of functions o : S — &,
A: L — L' for which ¢(i) = /" and

(sy,a,8p) € Tr implies (o(s1),\(a),0(s2)) € Tr}.

@ T: category of transition systems
@ S: fully faithful subcategory of synchronization trees

27/32

Synchronization trees Languages Conclusion

Synchronization trees

@ /: S — Tis fully faithful
@ Right adjoint: unfolding:
@ Given transition system T = (S, i, L, Tr), define
synchronization tree ts(T) = (S', ', L, Tr') (same labels) by
o S’ =setofallpathsin T
o i" = () (empty path)
e Tr' = one-step continuations of paths:

T ={((s1,---,5),a (S1,-- Sk, Skr1) | (Sk, @, Sky1) € Tr}

@ Co-unit morphisms 7 : i(ts(T)) — T given as
et = (p,idL), with .
() =1 @(s1,..-,8n) = sn

@ Universal property: i(ts(T)) =— T

5*% .

i(Y)

28/32

Synchronization trees Languages Conclusion

Synchronization trees

= co-reflectioni:S<ST: ts

= all unit morphisms are isos.

@ That is, for all synchronization trees Y, the morphism
ny : Y — ts(i(Y)) is an iso.
@ Any synchronization tree is isomorphic to its unfolding.

29/32

Synchronization trees Languages Conclusion

Languages

@ A language over a labeling L is a pair (H, L) with H C L*
prefix-closed: Vs € L*Vae L:saec H=sc H

@ Morphisms of languages (H, L) — (H', L'): partial functions
A:L— L' forwhich *(w) e H forallw e H

= category of languages L

@ The language of a transition system T = (S, i, L, Tr): usual
stuff: tI(T) = (H, L) with
a as

H={ajay...a,|3pathi s 2 ... 2 5,in T}

@ Extendto functor f/ : T — L by sl(o,\) = A
@ Composition gives functor s/ = t/o/:S —T — L

30/32

Synchronization trees Languages Conclusion

Languages

@ Languages as synchronization trees: Given language
(H, L), define Is(H, L) = (H, e, L, Tr) with
Tr={(h,a, ha) | hac H}
@ Extend to functor /s : L — S by Is(A) = (A[4, A)
(restriction of * to H)
@ s/:S s L:Isisan adjunction:
@ Co-unit morphisms ¢y 1y : sl(Is(H, L)) — (H, L) are
identities
@ Universal property: sl(Is(H, Cva_‘LIu L)
miu% x
sI(Y)
= s/:S S L:Isis areflection

31/32

Synchronization trees Languages Conclusion

Conclusion

@ Co-reflectioni:S <= T: ts
@ Reflections/:S<=L: s

@ But the composed functors iols: L —T,L «— T: slotsare
not even adjoint!

32/32

