Category Theory and Functional Programming

Day 2

7 October 2009

Categories, functors, natural transformations

1 Graphs vs. categories
2 Exercise P-1.1.20.2 (Petur)
3 Transition systems revisited
4 Functors
5 Exercise P-2.1.10.3
6 Exercise ML-1.3.4
7 Natural transformations
8 Exercise P-2.3.11.2 (Mikkel)

Graphs vs. categories Exercise Transition systems Fundors Exercises Natural transformations Exercise

Graphs

- Set of points V
- Set of edges E
- For each edge e ∈ E, a source src(e) ∈ V and a target tgt(e) ∈ V
- (Write $e: x \rightarrow y$ if src(e) = x and tgt(e) = y)

(These are directed multigraphs; to say $E \subseteq V \times V$ is fine as long as there's at most one edge between any two points.)

That's all folks:

 $V, E, src : E \rightarrow V, tgt : E \rightarrow V$

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Reflexive graphs

- Set of points V
- Set of edges E
- For each edge e ∈ E, a source src(e) ∈ V and a target tgt(e) ∈ V
- (Write $e: x \rightarrow y$ if src(e) = x and tgt(e) = y)
- For each point $x \in V$, a degenerate edge $deg(v) \in E$

That's all folks:

 $V, E, src : E \rightarrow V, tgt : E \rightarrow V, deg : V \rightarrow E$

Exercise

Graphs vs. categories

Exercise Transition systems

Functors

Exercises

Natural transformations Exercise

Categories

- Set of points V
- Set of edges E
- For each edge e ∈ E, a source src(e) ∈ V and a target tgt(e) ∈ V
- (Write $e: x \rightarrow y$ if src(e) = x and tgt(e) = y)
- For each point $x \in V$, a degenerate edge $deg(v) \in E$
- For each $e_1: x \to y$ and $e_2: y \to z$, a composite $e_2 \circ e_1: x \to z$,
- with associativity: $e_3 \circ (e_2 \circ e_1) = (e_3 \circ e_2) \circ e_1$ whenever these are defined,
- and identities: for all edges $e: x \to y$, $e \circ \deg(x) = e$ and $\deg(y) \circ e = e$.
- That's all folks:

 $V, E, src: E
ightarrow V, tgt: E
ightarrow V, deg: V
ightarrow E, \circ: E imes_V E
ightarrow E$

Transition systems Functors Exercises Natural transformations

Exercise

Categories

Graphs vs. categories

Exercise

- Set of objects C_0
- Set of arrows C₁
- For each arrow $f \in C_1$, a domain $dom(f) \in C_0$ and a co-domain $cod(f) \in C_0$
- (Write $f: A \rightarrow B$ if dom(f) = A and cod(f) = B)
- For each object $A \in C_0$, an identity arrow $id_A \in C_0$
- For each $f_1:A\to B$ and $f_2:B\to C$, a composite $f_2\circ f_1:A\to C$,
- with associativity: $f_3 \circ (f_2 \circ f_1) = (f_3 \circ f_2) \circ f_1$ whenever these are defined,
- and identities: for all arrows $f: A \rightarrow B$, $f \circ id_A = f$ and $id_B \circ f = f$.
- That's all folks:

 $\mathcal{C}_0,\mathcal{C}_1,\textit{dom},\textit{cod}:\mathcal{C}_1\to\mathcal{C}_0, id:\mathcal{C}_0\to\mathcal{C}_1, \circ:\mathcal{C}_1\times_{\mathcal{C}_0}\mathcal{C}_1\to\mathcal{C}_1$

Exercise P-1.1.20.2

A group $(G, *, e, ^{-1})$ is a set G equipped with a binary operation *, a distinguished element e, and a unary operation $^{-1}$ such that

- (a) (x * y) * z = x * (y * z) for all $x, y, z \in G$
- (b) e * x = x = x * e for all $x \in G$, and
- (c) $x * x^{-1} = e = x^{-1} * x$ for all $x \in G$

Show how an arbitrary group can be considered as a category.

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

Petur

Exercise P-1.1.20.2

A monoid (G, *, e) is a set G equipped with a binary operation *, a distinguished element e

- (a) (x * y) * z = x * (y * z) for all $x, y, z \in G$
- (b) e * x = x = x * e for all $x \in G$, and

Show how an arbitrary monoid can be considered as a category.

Transition systems revisited

Exercise Transition systems Functors Exercises Natural transformations

Exercise

Exercise Transition systems Functors Exercises Natural transformations

- A transition system is a tuple (S, i, L, T) with $Tr \subseteq S \times L \times S$. Goal: Externalize this
- A transition system is a graph (S, Tr) with an initial state $i:* \to S$ and a labeling $\lambda: Tr \to L$
- *: the one-element set; i:* → S picks out one element of
- The category of pointed sets: comma category ∗ ↓ Set

⇒ objects: sets with a basepoint

arrows: functions which preserve the basepoint

9/32

Exercise Transition systems Functors Exercises Natural transformations

Exercise

Graphs vs. categories

Exercise Transition systems Functors Exercises Natural transformations

Exercise

Transition systems revisited

- Transition system without labels = pointed graph
- ⇒ want comma category * ↓ Graph
- Turn one-element set * into graph: add degenerate edge
- ⇒ the "terminal" reflexive graph:

$$* = x \bigcap \deg(x)$$

- The comma category of pointed reflexive graphs * ↓ RGraph:
- objects: reflexive graphs with initial state arrows: graph homomorphisms which preserve the initia
- unlabeled transition systems (and functional simulations)

Transition systems revisited

Graphs vs. categories

- A transition system is a pointed reflexive graph $* \xrightarrow{l} (S, Tr)$ A transition by the state $\ell: Tr \to L$.

 Need more externalization
- Idea: a set is a graph with one point:

- \Rightarrow A transition system is a diagram $*\stackrel{i}{\to} (S, Tr) \stackrel{\ell}{\to} (*, L)$ in the category of reflexive graphs.
- Forget about internal structure: $* \stackrel{i}{\rightarrow} T \stackrel{\ell}{\rightarrow} G_L$ (externalization!)

Transition systems revisited

- A morphism of transition systems $T = (S, i, L, T_l)$, T' = (S', i', L', T'') is a pair $f = (\sigma, \lambda) : T \to T'$ of functions $\sigma : S \to S', \lambda : L \to L'_{\perp}$ for which $\sigma(i) = i'$ and
- $(s_1, a, s_2) \in Tr$ implies $(\sigma(s_1), \lambda(a), \sigma(s_2)) \in T'_{\perp}$

- ⇒ a diagram in the category of reflexive graphs
- ("Pointed arrow category")

Exercise

Functors

• A functor from a category $\mathcal C$ to a category $\mathcal D$ consists of a function F on objects and a function F on arrows

- for which $F(id_A) = id_{F(A)}$
- and $F(g \circ f) = F(g) \circ F(f)$.
- Structure-preserving function between categories
- F is full ⇔ surjective on arrows
- F is faithful ⇔ injective on arrows

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations Exercise

13/32

Exercise P-2.1.10.3

one-object categories. What are the functors from M to N? Let M, N be two monoids (groups; preorders) considered as

Graphs vs. categories Exercise Transition systems Functors

Exercises

Natural transformations

Exercise

Exercise ML-1.3.4

which maps each group to its center. Prove that there is no functor from groups to Abelian groups

- A group G is Abelian if its operation * is commutative; x*y=y*x for all $x\in G$.
- The center Z(G) of a group G is the set of all elements which commute with all others;

$$Z(G) = \{x \in G \mid \forall y \in G : x * y = y * x\}$$

Graphs vs. categories Exercise Transition systems Functors Exercises Natural transformations

Exercise

Natural transformations

A natural transformation $\eta: F \rightarrow G$ between functors $F,G:\mathcal{C}\to\mathcal{D}$ is a function from $\mathcal{C}\text{-objects}$ to $\mathcal{D}\text{-arrows}$ $\eta_A: F(A) \to G(A)$ such that the diagrams

$$F(A) \xrightarrow{\eta_A} G(A) \ F(B) \xrightarrow{\eta_B} G(B)$$

commute for all arrows $f: A \rightarrow B$ in C.

16/32

Definition

Examples

Exercise P-2.3.11.2

Let $S, T: \mathcal{C} \to \mathcal{P}$ be functors. Show that there is a unique natural transformation $\tau: S \to T$ if and only if $S(\mathcal{C}) \leq T(\mathcal{C})$ for Let \mathcal{P} be a preorder (regarded as a category) and \mathcal{C} a category.

17/32

Adjoint functors

Example: free groups Co-units Example (Pierce 2.4.1-2) Definition

Examples

Special types of adjoints

(Mikkel)

Co-units Examples Special types of adjoints

Adjoint functors

natural transformation $\eta: \mathit{l}_{\mathit{C}} \to \mathit{G} \circ \mathit{F}$ such that for each arrow Definition: Functors $F : C \hookrightarrow D : G$ are adjoint if there is a for which the diagram $f:X \to G(Y) \in \mathcal{C}$, there is a *unique* arrow $f^{\sharp}:F(X) \to Y \in \mathcal{D}$

commutes. This is called the *universal property*.

- F = left adjoint, G = right adjoint
- $\eta = \mathsf{unit} \mathsf{transformation}$ from identity functor to $G \circ F$

Examples Co-units Examples Special types of adjoints

19/32

Example (Pierce 2.4.1-2)

 $i_S(s) = [s]$ functor $U: \mathbf{Mon} \to \mathbf{Set}$, with unit $i: I_{\mathbf{Set}} \to U \circ \mathsf{List}$ given by The functor List : **Set** → **Mon** is left adjoint to the forgetful

- Example 2.4.2: *length* = 1[‡]
- Left adjoints to forgetful functors are called free functors
- So List(S) is the free monoid on S

Example: free groups

For a set S, define the free group F(S) on S as follows

- Let W be the set of finite words $w = w_1 w_2 \dots w_n$, with each $w_i \in S$, or $w_i = s^{-1}$ for some $s \in S$. That's just *syntax*.
- A word w can be reduced if it contains a subword ss⁻¹ or $s^{-1}s$. Then w is equivalent to w-with-the-subword-removed
- F(S) is the set of equivalence classes of W. This defines an equivalence relation on W. The free group
- Example:

 $F({a,b}) = {\varepsilon, a, b, ab, ab^{-1}, a^{-1}b, a^{-1}b^{-1}, ba, ba^{-1}, \dots}$

U: Group \rightarrow Set. This is functorial, and F is left adjoint to the forgetful functor

- Universal property: S —
- ightarrow U(F(S))

U(G)

Special types of adjoints

21/32

Alternative characterizations of adjoints

Functors $F: C \hookrightarrow \mathcal{D}: G$ are adjoint if

such that for each arrow there is a unit $\eta: I_C \rightarrow G \circ F$ the diagram $f^{\sharp}: F(X)
ightarrow Y \in \mathcal{D}$ for which *unique* arrow $f:X\to G(Y)\in\mathcal{C}$, there is a

there is a co-unit $\varepsilon : F \circ G \rightarrow I_{\mathcal{D}}$ $g^*: X \to \textit{G}(Y) \in \mathcal{C}$ for which the diagram $g: F(X) \rightarrow Y \in \mathcal{D}$, there is a such that for each arrow *unique* arrow

commutes

 For F: Set

Mon: G and F: Set

Group: G, $\varepsilon_{\gamma}([s_1, s_2, \ldots, s_n]) = s_1 * s_2 * \cdots * s_n.$

Definition

Examples

Examples

Special types of adjoints

- Example RB-6.3.1: floor and ceiling
- $\mathbb Z$ and $\mathbb R$ are partial orders \Rightarrow categories
- The forgetful functor $U: \mathbb{Z} \to \mathbb{R}$ has
- left adjoint Ceil : $\mathbb{R} \to \mathbb{Z}$ ("smallest integer not smaller than") and
- right adjoint Floor : $\mathbb{R} \to \mathbb{Z}$ ("greatest integer not greater than")
- Adjunction Ceil : $\mathbb{R} \hookrightarrow \mathbb{Z}$: U has unit $\eta_X = (X \leq \text{Ceil}(X))$ and co-unit $\varepsilon_Y = (Ceil(Y) = Y)$ (an *iso*!)
- Adjunction $U : \mathbb{Z} \hookrightarrow \mathbb{R} : \mathsf{Floor}$ has unit $\eta_X = (X = \mathsf{Floor}(X))$ (an *iso*!) and co-unit $\varepsilon_Y = (Floor(Y) \leq Y)$

Example RB-6.3.4(1): free category on a graph

Examples

Co-units

Examples

Special types of adjoints

23/32

The free category F(G) on a graph G = (V, E) has

- as objects all points in V
- as arrows all paths in G: all sequences (e_1, e_2, \dots, e_n) of edges in E with $tgt(e_i) = src(e_{i+1})$
- and composition of arrows is concatenation of paths
- left adjoint to the forgetful functor: $F : Graph \hookrightarrow Cat : U$
- Like the adjunction Set

 Mon, but many-object!

24/32

Special types of adjoints

An adjunction $F: \mathcal{C} \hookrightarrow \mathcal{D}: G$ is

a reflection if G is fully faithful

 \Leftrightarrow all arrows $\varepsilon_Y : F(G(Y)) \to Y$ are isos

a co-reflection if F is fully faithful

 \Leftrightarrow all arrows $\eta_X: X \to G(F(X))$ are isos

an adjoint equivalence if it is both a reflection and a co-reflection

25/32

Transition systems, synchronization trees, languages

Synchronization trees

Conclusion

Synchronization trees

- Recall: A transition system is a tuple (S, i, L, Tr) with $Tr \subseteq S \times L \times S$. (Back to the old notation!)
- is precisely one path from i to any state $s \in S$: A synchronization tree is a transition system in which there
- every state is reachable
- acyclic
- no joins
- Recall: A morphism of transition systems is a pair $(\sigma, \lambda): (S, i, L, T_l) \to (S', l', L', T_l')$ of functions $\sigma: S \to S', \lambda: L \to L'_{\perp}$ for which $\sigma(i) = l'$ and

$$(s_1, a, s_2) \in Tr$$
 implies $(\sigma(s_1), \lambda(a), \sigma(s_2)) \in T'_{\perp}$

- T: category of transition systems
- S: fully faithful subcategory of synchronization trees

Conclusion

27/32

Synchronization trees

- *i* : S → T is fully faithful
- Right adjoint: unfolding:
- Given transition system T=(S,i,L,Tr), define synchronization tree ts(T)=(S',i',L,Tr') (same labels) by S'= set of all paths in T
- i' = () (empty path)
- Tr' = one-step continuations of paths:

$$Tr' = \{((s_1, \ldots, s_k), a, (s_1, \ldots, s_k, s_{k+1}) \mid (s_k, a, s_{k+1}) \in Tr\}$$

• Co-unit morphisms $\varepsilon_T:i(ts(T))\to T$ given as $\varepsilon_T=(\varphi,\mathrm{id}_L),$ with

$$\varphi(())=i$$
 $\varphi(s_1,\ldots,s_n)=s_n$

Synchronization trees Languages Conclusion

Synchronization trees

 \Rightarrow co-reflection $i: \mathbf{S} \hookrightarrow \mathbf{T}: ts$

⇒ all unit morphisms are isos.

- That is, for all synchronization trees Y, the morphism $\eta_Y: Y \to ts(i(Y))$ is an iso.
- Any synchronization tree is isomorphic to its unfolding.

Synchronization trees Languages

29/32

Conclusion

Languages

- A language over a labeling L is a pair (H, L) with H ⊆ L* prefix-closed: ∀s ∈ L* ∀a ∈ L : sa ∈ H ⇒ s ∈ H
- Morphisms of languages $(H, L) \rightarrow (H', L')$: partial functions $\lambda : L \rightarrow L'_{\perp}$ for which $\lambda^*(w) \in H'$ for all $w \in H$
- ⇒ category of languages L
- The language of a transition system T = (S, i, L, Tr): usual stuff: tl(T) = (H, L) with

$$H = \{a_1 a_2 \dots a_n \mid \exists \text{ path } i \xrightarrow{a_1} s_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} s_n \text{ in } T\}$$

- Extend to functor $t\!l: \mathbf{T} \to \mathbf{L}$ by $s\!l(\sigma, \lambda) = \lambda$
- Composition gives functor sl = tl ∘ i : S → T → L

Synchronization trees Languages Conclusion

Languages

- Languages as synchronization trees: Given language (H, L), define $ls(H, L) = (H, \varepsilon, L, Tr)$ with $Tr = \{(h, a, ha) \mid ha \in H\}$
- Extend to functor $s: L \to S$ by $s(\lambda) = (\lambda_{1H}^*, \lambda)$ (restriction of λ^* to s)
- Co-unit morphisms $\varepsilon_{(H,L)}:sl(\mathit{ls}(H,L)) \to (H,L)$ are identities
- Universal property: $s!(ls(H,L)) \xrightarrow{id} (H,L)$ $s!(\lambda^{\sharp}) \uparrow \qquad \qquad \lambda$ s!(Y)
- \Rightarrow s/: $\mathbf{S} \hookrightarrow \mathbf{L}$: /s is a reflection

Synchronization trees Languages Conclusion

31/32

Conclusion

• Co-reflection $i: \mathbf{S} \hookrightarrow \mathbf{T}: t\mathbf{s}$

• Reflection $sl : \mathbf{S} \hookrightarrow \mathbf{L} : ls$

 But the composed functors i ∘ ls : L → T, L ← T : sl ∘ ts are not even adjoint!