Category Theory and Functional Programming

Day 2

7 October 2009

[Categories, functors, natural transformations](#page-1-0)

[Graphs vs. categories](#page-2-0) 2 [Exercise P-1.1.20.2 \(Petur\)](#page-6-0) 3 [Transition systems revisited](#page-8-0) **[Functors](#page-12-0)** 5 [Exercise P-2.1.10.3](#page-13-0) 6 [Exercise ML-1.3.4](#page-15-0) [Natural transformations](#page-15-0) [Exercise P-2.3.11.2 \(Mikkel\)](#page-16-0)

Graphs

- Set of points *V*
- Set of edges *E*
- For each edge *e* ∈ *E*, a source *src*(*e*) ∈ *V* and a target *tgt*(*e*) ∈ *V*
- (Write $e: x \rightarrow y$ if $src(e) = x$ and $tgt(e) = y$)

(These are directed multigraphs; to say $E \subseteq V \times V$ is fine as long as there's at most one edge between any two points.)

That's all folks: V, *E*, *src* : $E \rightarrow V$, *tat* : $E \rightarrow V$

Reflexive graphs

- Set of points *V*
- Set of edges *E*
- For each edge *e* ∈ *E*, a source *src*(*e*) ∈ *V* and a target *tgt*(*e*) ∈ *V*
- (Write $e: x \rightarrow y$ if $src(e) = x$ and $tgt(e) = y$)
- **•** For each point $x \in V$, a degenerate edge deg(v) $\in E$

That's all folks: $V, E, src: E \rightarrow V, tgt: E \rightarrow V, det: V \rightarrow E$

Categories

- Set of points *V*
- Set of edges *E*
- For each edge *e* ∈ *E*, a source *src*(*e*) ∈ *V* and a target *tgt*(*e*) ∈ *V*
- (Write $e: x \rightarrow y$ if $src(e) = x$ and $tgt(e) = y$)
- For each point *x* ∈ *V*, a degenerate edge deg(*v*) ∈ *E*
- For each $e_1 : x \to y$ and $e_2 : y \to z$, a composite $e_2 \circ e_1 : X \to Z$.
- with associativity: $e_3 \circ (e_2 \circ e_1) = (e_3 \circ e_2) \circ e_1$ whenever these are defined,
- and identities: for all edges $e : x \rightarrow y$, $e \circ deg(x) = e$ and $deg(V) \circ e = e$.
- *That's all folks:*

V, *E*, *src* : *E* \rightarrow *V*, *tgt* : *E* \rightarrow *V*, deg : *V* \rightarrow *E*, \circ : *E* \times *y E* \rightarrow *E*

Categories

- Set of objects C_0
- Set of arrows C_1
- For each arrow $f \in C_1$, a domain $dom(f) \in C_0$ and a $\cot(f) \in C_0$
- (Write $f : A \rightarrow B$ if $dom(f) = A$ and $cod(f) = B$)
- For each object $A \in \mathcal{C}_0$, an identity arrow $\mathsf{id}_A \in \mathcal{C}_0$
- For each $f_1 : A \rightarrow B$ and $f_2 : B \rightarrow C$, a composite $f_2 \circ f_1 : A \rightarrow C$.
- with associativity: $f_3 \circ (f_2 \circ f_1) = (f_3 \circ f_2) \circ f_1$ whenever these are defined,
- and identities: for all arrows $f : A \rightarrow B$, $f \circ id_A = f$ and id **B** \circ *f* = *f*.
- *That's all folks:* \mathcal{C}_0 , \mathcal{C}_1 , dom, cod $: \mathcal{C}_1 \to \mathcal{C}_0,$ id $: \mathcal{C}_0 \to \mathcal{C}_1, \circ : \mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_1 \to \mathcal{C}_1$

Exercise P-1.1.20.2 (Petur)

A group (*G*, ∗, *e*, −1) is a set *G* equipped with a binary operation ∗, a distinguished element *e*, and a unary operation $^{-1}$ such that

(a)
$$
(x * y) * z = x * (y * z)
$$
 for all $x, y, z \in G$,

(b)
$$
e * x = x = x * e
$$
 for all $x \in G$, and

(c)
$$
x * x^{-1} = e = x^{-1} * x
$$
 for all $x \in G$.

Show how an arbitrary group can be considered as a category.

Exercise P-1.1.20.2 (Petur)

A monoid (*G*, ∗, *e*) is a set *G* equipped with a binary operation ∗, a distinguished element *e* such that

(a)
$$
(x * y) * z = x * (y * z)
$$
 for all $x, y, z \in G$,

(b)
$$
e * x = x = x * e
$$
 for all $x \in G$, and

Show how an arbitrary monoid can be considered as a category.

[Graphs vs. categories](#page-2-0) [Exercise](#page-16-0) **[Transition systems](#page-8-0)** [Functors](#page-12-0) [Exercises](#page-13-0) [Natural transformations](#page-15-0) Exercise

Transition systems revisited

- A transition system is a tuple (*S*, *i*, *L*, *Tr*) with *Tr* ⊂ *S* × *L* × *S*. Goal: Externalize this
- A transition system is a graph (*S*, *Tr*) with an initial state $i: * \rightarrow S$ and a labeling $\lambda: \mathcal{Tr} \rightarrow L$
- ∗ : the one-element set; *i* : ∗ → *S* picks out one element of *S*
- The category of pointed sets: *comma category* ∗ ↓ **Set**

 \Rightarrow objects: sets with a basepoint arrows: functions which preserve the basepoint

Transition systems revisited

- \bullet Transition system without labels $=$ pointed graph
- ⇒ want comma category ∗ ↓ **Graph**
	- Turn one-element set ∗ into graph: add degenerate edge
- \Rightarrow the "terminal" reflexive graph:

$$
* = X \bigcap_{r \sim} \deg(x)
$$

- The comma category of pointed reflexive graphs ∗ ↓ **RGraph**:
- objects: reflexive graphs with initial state arrows: graph homomorphisms which preserve the initial state
- $=$ unlabeled transition systems (and functional simulations)

Transition systems revisited

A transition system is a pointed reflexive graph $* \stackrel{i}{\rightarrow} (S, \overline{I}r)$ together with a **labeling** $\ell : \mathsf{Tr} \to \mathsf{L}$.

Need more externalization

• Idea: a set is a graph with one point:

$$
\{a,b,c\} = a \bigodot_{c}^{d} X \stackrel{b}{\longleftarrow}
$$

- \Rightarrow A transition system is a diagram $* \xrightarrow{i} (S, 7r) \xrightarrow{\ell} (*, L)$ in the category of reflexive graphs.
	- Forget about internal structure: ∗ *ⁱ* −→ *T* `−→ *^G^L* (externalization!)

Transition systems revisited

 \bullet A morphism of transition systems $T = (S, i, L, Tr)$, $\mathcal{T}' = (\mathcal{S}', \mathit{i}', \mathit{L}', \mathit{Tr}')$ is a pair $f = (\sigma, \lambda) : \mathcal{T} \to \mathcal{T}'$ of functions $\sigma: \mathcal{S} \rightarrow \mathcal{S}', \lambda: L \rightarrow L'_{\perp}$ for which $\sigma(i) = i'$ and

 $(s_1, a, s_2) \in \mathcal{T}$ *r* implies $(\sigma(s_1), \lambda(a), \sigma(s_2)) \in \mathcal{T}$ ^t

- \Rightarrow a diagram in the category of reflexive graphs
	- ("Pointed arrow category")

• A functor from a category C to a category D consists of a function *F* on objects and a function *F* on arrows

- for which $F(id_A) = id_{F(A)}$
- and $F(q \circ f) = F(q) \circ F(f)$.
- **•** Structure-preserving function between categories.
- **•** *F* is full ⇔ surjective on arrows
- *F* is faithful ⇔ injective on arrows

[Graphs vs. categories](#page-2-0) [Exercise](#page-16-0) [Transition systems](#page-8-0) [Functors](#page-12-0) [Exercises](#page-13-0) [Natural transformations](#page-15-0) Exercise

Exercise P-2.1.10.3

Let *M*, *N* be two monoids (groups; preorders) considered as one-object categories. What are the functors from *M* to *N*?

Prove that there is no functor from groups to Abelian groups which maps each group to its center.

- A group *G* is Abelian if its operation ∗ is commutative; $x * y = y * x$ for all $x \in G$.
- The center *Z*(*G*) of a group *G* is the set of all elements which commute with all others;

$$
Z(G) = \{x \in G \mid \forall y \in G : x * y = y * x\}
$$

Natural transformations

A natural transformation $\eta : F \to G$ between functors $F, G: \mathcal{C} \to \mathcal{D}$ is a function from \mathcal{C} -objects to \mathcal{D} -arrows, $A \rightarrow \eta_A$: $F(A) \rightarrow G(A)$ such that the diagrams

$$
F(A) \xrightarrow{\eta_A} G(A)
$$

$$
F(f) \downarrow \qquad \qquad G(f)
$$

$$
F(B) \xrightarrow{\eta_B} G(B)
$$

commute for all arrows $f : A \rightarrow B$ in C.

Exercise P-2.3.11.2 (Mikkel)

Let P be a preorder (regarded as a category) and C a category. Let *S*, $T: \mathcal{C} \rightarrow \mathcal{P}$ be functors. Show that there is a unique natural transformation $\tau : S \to T$ if and only if $S(C) \leq T(C)$ for all $C \in \mathcal{C}$.

[Adjoint functors](#page-17-0)

[Definition](#page-18-0) [Example \(Pierce 2.4.1-2\)](#page-19-0) [Example: free groups](#page-21-0) [Co-units](#page-21-0) 13 [Examples](#page-22-0) [Special types of adjoints](#page-24-0)

Definition: Functors $F: \mathcal{C} \leftrightarrows \mathcal{D}$: *G* are adjoint if there is a natural transformation $\eta : I_c \rightarrow G \circ F$ such that for each arrow $f: X \rightarrow G(Y) \in \mathcal{C}$, there is a *unique* arrow $f^{\sharp}: F(X) \rightarrow Y \in \mathcal{D}$ for which the diagram

commutes. This is called the *universal property*.

 \bullet $F =$ left adjoint, $G =$ right adjoint

 \bullet η = unit – transformation from identity functor to $G \circ F$

The functor List : $Set \rightarrow Mon$ is left adjoint to the forgetful functor $U: \textbf{Mon} \rightarrow \textbf{Set}$, with unit $i: I_{\textbf{Set}} \rightarrow U \circ L$ ist given by $i_S(s) = [s]$:

Example 2.4.2: *length* = 1^{\sharp}

- Left adjoints to forgetful functors are called free functors
- So List(*S*) is the free monoid on *S*

[Definition](#page-18-0) [Examples](#page-19-0) [Co-units](#page-21-0) [Examples](#page-22-0) [Special types of adjoints](#page-24-0) Example: free groups

For a set *S*, define the free group *F*(*S*) on *S* as follows:

- Let *W* be the set of finite words $w = w_1w_2 \ldots w_n$, with each $w_i \in S$, or $w_i = s^{-1}$ for some $s \in S$. That's just *syntax*.
- A word *w* can be reduced if it contains a subword *ss*−¹ or *s*^{−1}*s*. Then *w* is equivalent to *w*-with-the-subword-removed.
- This defines an equivalence relation on *W*. The free group *F*(*S*) is the set of equivalence classes of *W*.
- **•** Example:

 $F({a,b}) = {\varepsilon, a, b, ab, ab^{-1}, a^{-1}b, a^{-1}b^{-1}, ba, ba^{-1}, \dots}$ This is functorial, and *F* is left adjoint to the forgetful functor *U* : **Group** → **Set**.

• Universal property:

$$
S \longrightarrow U(\mathcal{F}(S))
$$

\n
$$
\downarrow U(\mathcal{F}^{\sharp})
$$

\n
$$
U(G)
$$

Alternative characterizations of adjoints

Functors $F: \mathcal{C} \leftrightarrows \mathcal{D}$: *G* are adjoint if

there is a unit $\eta: I_c \to G \circ F$ such that for each arrow $f: X \to G(Y) \in \mathcal{C}$, there is a *unique* arrow $f^{\sharp} : F(X) \rightarrow Y \in \mathcal{D}$ for which the diagram

commutes.

there is a co-unit ε : $F \circ G \to I_D$ such that for each arrow $g: F(X) \to Y \in \mathcal{D}$, there is a *unique* arrow $g^*: X \to G(Y) \in \mathcal{C}$ for which the diagram

commutes.

• For $F:$ Set \leftrightarrows Mon : G and $F:$ Set \leftrightarrows Group : G , $\varepsilon_Y([s_1, s_2, \ldots, s_n]) = s_1 * s_2 * \cdots * s_n.$

Example RB-6.3.1: floor and ceiling

- $\mathbb Z$ and R are partial orders \Rightarrow categories
- The forgetful functor $U: \mathbb{Z} \to \mathbb{R}$ has
- left adjoint Ceil : $\mathbb{R} \to \mathbb{Z}$ ("smallest integer not smaller than") and
- right adjoint Floor : $\mathbb{R} \to \mathbb{Z}$ ("greatest integer not greater than")
- Adjunction Ceil : $\mathbb{R} \leftrightarrows \mathbb{Z}$: U has unit $\eta_X = (X \leq \text{Ceil}(X))$ and co-unit $\varepsilon_Y = (Ceil(Y) = Y)$ (an *iso*!)
- • Adjunction $U: \mathbb{Z} \leftrightarrows \mathbb{R}$: Floor has unit $\eta_X = (X = \mathsf{Floor}(X))$ (an *iso*!) and co-unit ε_Y = (Floor(*Y*) \leq *Y*)

Example RB-6.3.4(1): free category on a graph

The free category $F(G)$ on a graph $G = (V, E)$ has

- as objects all points in *V*
- as arrows all paths in *G*: all sequences (e_1, e_2, \ldots, e_n) of edges in *E* with *tgt*(e_i) = *src*(e_{i+1})
- and composition of arrows is concatenation of paths
- \Rightarrow left adjoint to the forgetful functor: $F :$ Graph \leftrightharpoons Cat : U
- Like the adjunction **Set Mon**, but *many-object*!

[Definition](#page-18-0) [Examples](#page-19-0) [Co-units](#page-21-0) [Examples](#page-22-0) [Special types of adjoints](#page-24-0)

Special types of adjoints

An adjunction $F: \mathcal{C} \leftrightarrows \mathcal{D}$: *G* is

- a reflection if *G* is fully faithful \Leftrightarrow all arrows ε_Y : $F(G(Y)) \to Y$ are isos
- a co-reflection if *F* is fully faithful \Leftrightarrow all arrows $\eta_X : X \to G(F(X))$ are isos
- • an adjoint equivalence if it is both a reflection and a co-reflection

[Transition systems, synchronization trees, languages](#page-25-0)

Synchronization trees

- Recall: A transition system is a tuple (*S*, *i*, *L*, *Tr*) with $Tr \subset S \times L \times S$. (Back to the old notation!)
- A synchronization tree is a transition system in which there is precisely one path from *i* to any state $s \in S$:
	- every state is reachable
	- acyclic
	- no joins
- Recall: A morphism of transition systems is a pair $(\sigma, \lambda) : (S, i, L, \pi) \to (S', i', L', \pi')$ of functions $\sigma : S \to S'$, $\lambda: L \to L'_{\perp}$ for which $\sigma(i) = i'$ and

 $(s_1, a, s_2) \in \mathcal{T}$ r implies $(\sigma(s_1), \lambda(a), \sigma(s_2)) \in \mathcal{T}$ r'

- **T**: category of transition systems
- **S**: fully faithful subcategory of synchronization trees

Synchronization trees

- \bullet *i* : \bullet \to **T** is fully faithful
- Right adjoint: unfolding:
- Given transition system $T = (S, i, L, Tr)$, define synchronization tree $ts(T) = (S', i', L, Tr')$ (same labels) by
	- S' = set of all paths in *T*
	- *^{* $'$ *} = () (empty path)*
	- \bullet \overline{Ir} = one-step continuations of paths:

 $Tr' = \{((s_1, \ldots, s_k), a, (s_1, \ldots, s_k, s_{k+1}) \mid (s_k, a, s_{k+1}) \in Tr\}$

• Co-unit morphisms ε_T : $i(ts(T)) \rightarrow T$ given as $\varepsilon_{\mathcal{T}} = (\varphi, \mathrm{id}_I)$, with

$$
\varphi(()) = i \qquad \varphi(\mathbf{s}_1,\ldots,\mathbf{s}_n) = \mathbf{s}_n
$$

Universal property: $i(ts(T)) \stackrel{\varepsilon_T}{\longrightarrow} T$

Synchronization trees

- \Rightarrow co-reflection *i* : $S \leq T : t$ s
- \Rightarrow all unit morphisms are isos.
	- That is, for all synchronization trees *Y*, the morphism η_Y : $Y \to \text{ts}(i(Y))$ is an iso.
	- Any synchronization tree is isomorphic to its unfolding.

Languages

- A language over a labeling *L* is a pair (*H*, *L*) with *H* ⊆ *L* ∗ prefix-closed: ∀*s* ∈ *L* [∗] ∀*a* ∈ *L* : *sa* ∈ *H* ⇒ *s* ∈ *H*
- Morphisms of languages $(H, L) \rightarrow (H', L')$: partial functions $\lambda : L \to L'_{\perp}$ for which $\lambda^*(w) \in H'$ for all $w \in H$
- ⇒ category of languages **L**
	- The language of a transition system $T = (S, i, L, Tr)$: usual stuff: $tI(T) = (H, L)$ with

$$
H = \{a_1 a_2 \dots a_n \mid \exists \text{ path } i \stackrel{a_1}{\longrightarrow} s_1 \stackrel{a_2}{\longrightarrow} \cdots \stackrel{a_n}{\longrightarrow} s_n \text{ in } T\}
$$

- Extend to functor $t\ell : \mathbf{T} \to \mathbf{L}$ by $s\ell(\sigma, \lambda) = \lambda$
- Composition gives functor *sl* = *tl* ◦ *i* : **S** → **T** → **L**

Languages

- Languages as synchronization trees: Given language (H, L) , define $I\mathbf{s}(H, L) = (H, \varepsilon, L, T\mathbf{r})$ with $Tr = \{(h, a, ha) \mid ha \in H\}$
- Extend to functor I s : **L** \rightarrow **S** by I s $(\lambda) = (\lambda_{\uparrow H}^*, \lambda)$ (restriction of λ ∗ to *H*)
- $s/ : S \leftrightarrows L : Is$ is an adjunction:
- ${\sf Co\text{-}unit}$ morphisms $\varepsilon_{(H,L)}:$ ${\sf sl}({\sf ls}(H,L))\to(H,L)$ are identities

Universal property: $sl({\cal B}({\cal H},L)) \xrightarrow{{\sf id}} ({\cal H},L)$ *sl*(*Y*) $sl(\lambda^{\sharp})$ OO λ |
|
| $\left(\frac{1}{\lambda} \right)$

 \Rightarrow *sl* : **S** \leftrightarrows **L** : *ls* is a reflection

Conclusion

- \bullet Co-reflection *i* : $S \nightharpoonup T : t$ s
- Reflection *sl* : **S L** : *ls*
- But the composed functors *i* ◦ *ls* : **L** → **T**, **L** ← **T** : *sl* ◦ *ts* are not even adjoint!