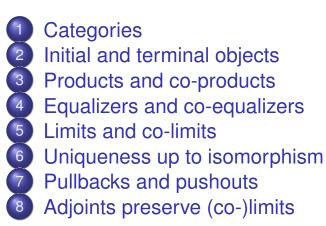
Category Theory and Functional Programming

Day 3

21 October 2009

Constructions in categories



Categories

- Set of objects C_0
- Set of arrows C₁
- For each arrow f ∈ C₁, a domain dom(f) ∈ C₀ and a co-domain cod(f) ∈ C₀
- (Write $f : A \rightarrow B$ if dom(f) = A and cod(f) = B)
- For each object $A \in C_0$, an identity arrow $id_A \in C_0$
- For each $f_1 : A \rightarrow B$ and $f_2 : B \rightarrow C$, a composite $f_2 \circ f_1 : A \rightarrow C$,
- with associativity: f₃ ∘ (f₂ ∘ f₁) = (f₃ ∘ f₂) ∘ f₁ whenever these are defined,
- and identities: for all arrows $f : A \rightarrow B$, $f \circ id_A = f$ and $id_B \circ f = f$.
- That's all folks: $C_0, C_1, \text{ dom}, \text{ cod} : C_1 \to C_0, \text{ id} : C_0 \to C_1, \circ : C_1 \times_{C_0} C_1 \to C_1$

3/31

Categories Initial objects Products Equalizers Limits Oriqueness Pullbacks Adjoint	Categories	Initial objects	Products	Equalizers	Limits	Uniqueness	Pullbacks	Adjoints
--	------------	-----------------	----------	------------	--------	------------	-----------	----------

Initial and terminal objects

Definition: Let C be a category and $\bot, \top \in C$ objects.

- \perp is an initial object if there is exactly one arrow $\perp \rightarrow A$ for every $A \in C$.
- \top is a terminal object if there is exactly one arrow $A \to \top$ for every $A \in C$.

```
(Note the duality.)
```

Examples: **Set**, **Graph**, transition systems, poset-as-category, pointed sets

Arrows from terminal objects pick out elements.

Example: in **Set**, an element of a set *A* is the same as an arrow $\top \rightarrow A$.

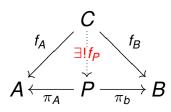
Products

Products and co-products

Definition: Let C be a category and $A, B \in C$ objects.

A product of A and B consists of an object P = A × B of C and ("projection") arrows π_A : P → A, π_B : P → B with the property that:

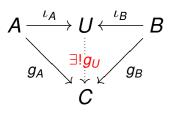
for any $C \in C$ with arrows $f_A : C \to A$ and $f_B : C \to B$, there is exactly one arrow $f_P : C \to P$ for which $\pi_A \circ f_P = f_A$ and $\pi_B \circ f_P = f_B$



Pullbacks

• Dually: A co-product of *A* and *B* consists of an object $U = A \sqcup B$ of *C* and ("injection") arrows $\iota_A : A \to U$,

 $\iota_B: B \to U$ with the property that



5/31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Products and co-products

Examples:

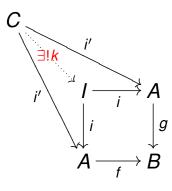
- Products in Set, Graph, Mon
- Co-products in Set, Graph, Mon
- Co-products in $\textbf{Set}_* = \top \downarrow \textbf{Set}$
- Product in Graph vs. product in RGraph

Equalizers and co-equalizers

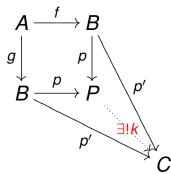
Products

Definition: Let C be a category and $f, g : A \rightarrow B \in C$ arrows.

An equalizer of f and gconsists of an object $I \in C$ and an arrow $i : I \rightarrow A$ for which



A co-equalizer of f and gconsists of an object $P \in C$ and an arrow $p : A \rightarrow P$ for which



Categories	Initial objects	Products	Equalizers	Limits	Uniqueness	Pullbacks	Adjoints
------------	-----------------	----------	------------	--------	------------	-----------	----------

 $I \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{p} P$

Equalizers and co-equalizers

Example, in Set:

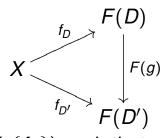
$$I \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{p} P$$

•
$$I = \{x \in A \mid f(x) = g(x)\}$$

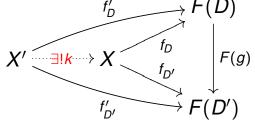
- $i: I \hookrightarrow A$ inclusion
- P = set of equivalence classes B/∼, where ∼ is the smallest equivalence relation for which f(x) ∼ g(x) for all x ∈ A
- $p: x \rightarrow [x]_{\sim}$ projection

Limits

- A (commutative) diagram in a category C is a functor $F : D \to C$ from a (usually quite small) category D.
- A cone for such a diagram *F* consists of an object $X \in C$ and arrows $f_D : X \to F(D)$ for all objects $D \in D$ such that for all arrows $g : D \to D' \in D$,



• A limit for such a diagram *F* is a cone $(X, \{f_D\})$ such that for all cones $(X', \{f'_D\})$, $f'_{L} \to F(D)$



Uniqueness

9/31

Adjoints

Limits

Categories

Initial objects

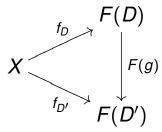
Products

• A (commutative) diagram in a category C is a functor $F : D \to C$ from a (usually quite small) category D.

Equalizers

• A cone for such a diagram *F* consists of an object $X \in C$ and arrows $f_D : X \to F(D)$ for all objects $D \in D$ such that for all arrows $g : D \to D' \in D$, F(D)

Limits

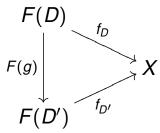


Pullbacks

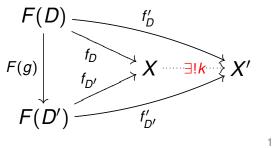
- A cone for *F* consists of an object *X* ∈ C and a natural transformation *f* : *X* → *F*, where *X* : D → C is the constant functor D → X, *f* → id_X.
- These form a category of cones over *F*.
- A limit for *F* is a terminal object in this category.

Co-limits

• A co-cone for a diagram $F : \mathcal{D} \to \mathcal{C}$ consists of an object $X \in \mathcal{C}$ and a natural transformation $f : F \xrightarrow{\cdot} \tilde{X}$, where $\tilde{X} : \mathcal{D} \to \mathcal{C}$ is the constant functor $D \mapsto X$, $f \mapsto id_X$:



• A co-limit is a terminal object in the category of co-cones over *F*:



Uniqueness

Pullbacks

11/31

Adjoints

Examples

Initial objects

Categories

• terminal object = limit of the empty diagram

Products

- initial object = co-limit of the empty diagram
- product $A \times B =$ limit of the diagram A B (no arrows)

Equalizers

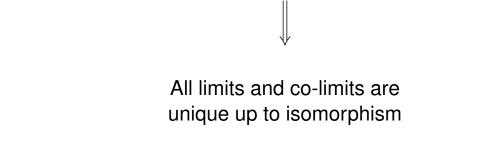
Limits

- co-product A ⊔ B = co-limit of the diagram A B (no arrows)
- equalizer of $f, g: A \to B = \text{limit of the diagram } A \xrightarrow{f} B$

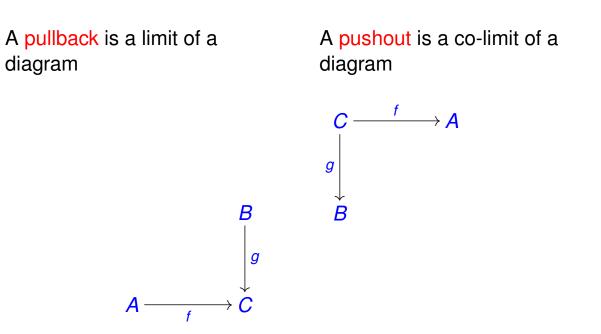
• co-equalizer of $f, g : A \to B =$ co-limit of the diagram $A \xrightarrow{f} B$

Uniqueness up to isomorphism

Terminal and initial objects are unique up to isomorphism



Pullbacks and pushouts



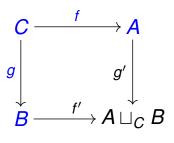
Products

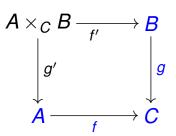
Pullbacks

Pullbacks and pushouts

A pullback is a limit of a diagram

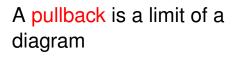
A pushout is a co-limit of a diagram

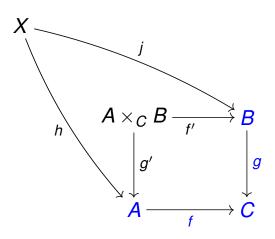




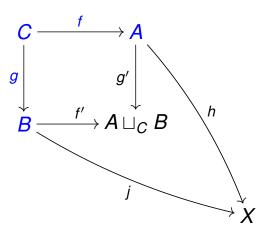
Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Pullbacks and pushouts





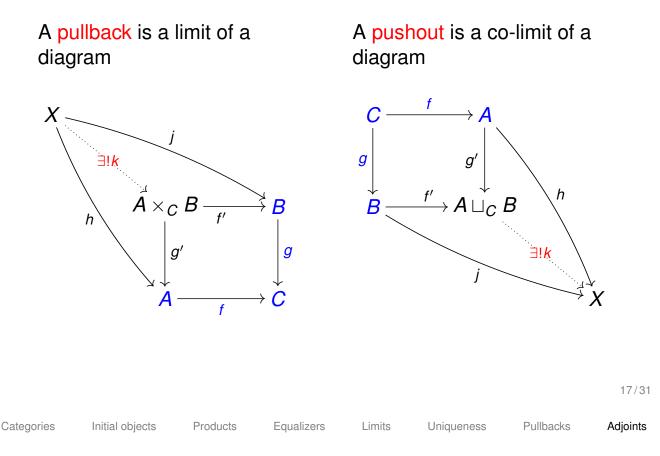
A pushout is a co-limit of a diagram



Products

Pullbacks

Pullbacks and pushouts



Adjoints preserve limits

Theorem: If $G : \mathcal{E} \to \mathcal{C}$ has a left adjoint and $D : \mathcal{D} \to \mathcal{E}$ has a limit (X, f), then $G \circ D : \mathcal{D} \to \mathcal{C}$ has limit $(G(X), G \circ f)$.

• "Right adjoints preserve limits"

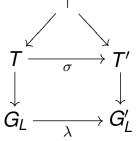
Dual theorem: If $F : C \to \mathcal{E}$ has a right adjoint and $D : \mathcal{D} \to C$ has a co-limit (X, f), then $G \circ D : \mathcal{D} \to \mathcal{E}$ has co-limit $(G(X), G \circ f)$.

• "Left adjoints preserve co-limits"

Categorical constructions for transition systems

Transition systems

- Recall: Category of transition systems = pointed arrow category ⊤ ↓ RGraph → RGraph¹
- objects $\top \rightarrow T \rightarrow G_L$
 - terminal graph \rightarrow graph \rightarrow one-point graph
 - initial point \rightarrow graph \rightarrow labeling
- morphisms

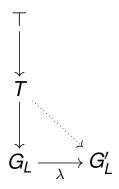


Re-labeling

Restriction

Re-labeling

Re-labeling of a transition system $\top \to T \to G_L$ by a label morphism $\lambda : L \to L'_{\perp}$:



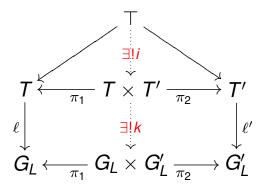
Composition

Product

Transition systems

Product of transition systems $\top \rightarrow T \rightarrow G_L, \ \top \rightarrow T' \rightarrow G'_L$:

Product



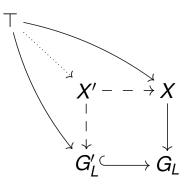
- Arrows $\top \xrightarrow{i} T \times T' \xrightarrow{k} G_L \times G'_L$ given uniquely because of product.
- The labeling is $G_L \times G'_L = G_{L \sqcup L' \sqcup L \times L'}$, or $L_{\perp} \times L'_{\perp} = \{(a, b), (a, \perp), (\perp, b), (\perp, \perp) \mid a \in L, b \in L'\}$
- This is the product in the category
 ⊤ ↓ RGraph → RGraph¹

Restriction

Restriction

Restriction of a transition system $\top \rightarrow T \rightarrow G_L$ to a subset $L' \hookrightarrow L$:

Pullback



Composition

Parallel composition

Transition systems

For parallel composition $(\top \rightarrow T \rightarrow G_L) || (\top \rightarrow T' \rightarrow G'_L)$:

- **1** Form product $(\top \rightarrow T \rightarrow G_L) \times (\top \rightarrow T' \rightarrow G'_L)$
 - This is completely synchronized: contains all possible combinations (a, b), (a, ⊥), (⊥, b) of labels ⇒ all possible synchronizations

Product

2 Restrict by an inclusion $S \hookrightarrow L_{\perp} \times L'_{\perp}$

Re-labeling

- Specifies which synchronizations are allowed
- For CCS: $S = \{(a, \bar{a}), (b, \bar{b}), \dots\}$
- For CSP: *S* = {(*a*, *a*), (*b*, *b*), . . . }
- etc. (!)
- 8 Re-label
 - For CCS: $(a, \overline{a}) \mapsto \tau, (b, \overline{b}) \mapsto \tau, \ldots$
 - For CSP: $(a, a) \mapsto a, (b, b) \mapsto b, \ldots$
 - etc.

Product

Parallel composition

- Theorem: All types of parallel composition can be expressed using product, restriction, and re-labeling.
- Restriction: pullback limit. Re-labeling: Product: limit. composition
- \Rightarrow All types of parallel composition are combinations of limits and composition.
- ⇒ All types of parallel composition are preserved by right adjoints.
- Recall: Unfolding from transition systems to synchronization trees is a right adjoint
- Corollary: If || is any type of parallel composition, then the unfolding of a || is the || of the unfoldings.

25/31

Solutions to recursive domain equations

14 Domains; fixed-point theorem 15 Recursive domain equations Generalized fixed-point theorem

Domains; fixed-point theorem

Recall:

- A domain is a set *D* together with a partial order
 - $\sqsubseteq \subseteq D imes D$
 - which contains a least element $\bot \in D$, and
 - in which every increasing chain x₁ ⊑ x₂ ⊑ · · · has a least upper bound (lub).
- A function $f : D \rightarrow D'$ of domains is continuous if
 - *f* is monotone: $x \sqsubseteq_D y \Rightarrow f(x) \sqsubseteq_{D'} f(y)$, and
 - *f* preserves lub's: for any increasing chain S ⊆ D,
 f(lub S) = lub *f*(S).
- Domains and continuous functions form a category **Dom**.
- A fixed point of an endofunction $f : D \rightarrow D$ is an element $x \in D$ for which f(x) = x.
- Fixed-point theorem: A continuous endofunction *f* : *D* → *D* has a least fixed point *x*^{*}, and *x*^{*} = lub{*fⁱ*(⊥) | *i* ∈ ℕ}.

27/31

Domains

Recursive equations

Fixed-point theorem

Recursive domain equations

Recall:

In operational semantics, we need recursively defined sets.
 For example

```
\mathbf{Env}_P = \mathbf{Pnavne} \rightharpoonup \mathbf{Kom} \times \mathbf{Env}_P
```

- This is actually a recursively defined domain (with subset ("specializatin") ordering ⊑ = ⊆)
- This is quite common. For example untyped lambda-calculus:

$\textbf{Expr} = \textbf{Expr} \rightharpoonup \textbf{Expr}$

• Or lambda-calculus with constants A:

```
Expr = A \cup (Expr \rightarrow Expr)
```

• Problematic, because this does not work for general sets!

Recursive domain equations

General question:

• If *F* is a function from domains to domains: Under what conditions does the equation D = F(D) have a meaningful solution?

Solution by categorification:

 Let *F* : Dom → Dom be a functor. Find conditions under which the equation *D* = *F*(*D*) has a least fixed point up to isomorphism, and a way to compute it.

Definition (P-3.4.1): A fixed point for a functor $F : \mathbf{Dom} \to \mathbf{Dom}$ is a pair (D, d) of a domain $D \in \mathbf{Dom}$ and an isomorphism $d : F(D) \to D$.

A pre-fixed point is a pair (D, d) with an arrow $d : F(D) \rightarrow D$.

• Want to find an initial fixed point.

29/31

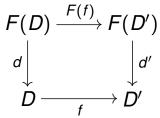
Domains

Recursive equations

Fixed-point theorem

Generalized fixed-point theorem

• Pre-fixed points and fixed points form categories: arrows:



- We are looking for an initial object in the category of fixed points.
- Lemma (P-3.4.2): An initial pre-fixed point is also an initial fixed point.

Domains

Generalized fixed-point theorem

- The one-point domain ⊥ = {⊥} is both initial and terminal in Dom.
- Theorem: Let $p: \bot \to F(\bot)$ be the unique arrow, and look at the (infinite) diagram

$$\bot \xrightarrow{\rho} F(\bot) \xrightarrow{F(\rho)} F^{2}(\bot) \xrightarrow{F^{2}(\rho)} F^{3}(\bot) \xrightarrow{F^{3}(\rho)} \cdots$$

F has an initial pre-fixed point, which is the co-limit of this diagram.

• This looks like

$$\bot \xrightarrow{p} F(\bot) \xrightarrow{F(p)} F^{2}(\bot) \xrightarrow{F^{2}(p)} F^{3}(\bot) \xrightarrow{F^{3}(p)} \cdots \cdots \cdots \xrightarrow{p} D$$

(this is called a projective limit)

31/31