
Category Theory and Functional
Programming

Day 3

21 October 2009

Constructions in categories

1 Categories
2 Initial and terminal objects
3 Products and co-products
4 Equalizers and co-equalizers
5 Limits and co-limits
6 Uniqueness up to isomorphism
7 Pullbacks and pushouts
8 Adjoints preserve (co-)limits

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Categories

Set of objects C0
Set of arrows C1

For each arrow f ∈ C1, a domain dom(f) ∈ C0 and a
co-domain cod(f) ∈ C0
(Write f : A→ B if dom(f) = A and cod(f) = B)

For each object A ∈ C0, an identity arrow idA ∈ C0

For each f1 : A→ B and f2 : B → C, a composite
f2 ◦ f1 : A→ C,
with associativity: f3 ◦ (f2 ◦ f1) = (f3 ◦ f2) ◦ f1 whenever these
are defined,
and identities: for all arrows f : A→ B, f ◦ idA = f and
idB ◦f = f .

That’s all folks:
C0, C1,dom, cod : C1 → C0, id : C0 → C1, ◦ : C1 ×C0 C1 → C1

3 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Initial and terminal objects

Definition: Let C be a category and ⊥,> ∈ C objects.
⊥ is an initial object if there is exactly one arrow ⊥ → A for
every A ∈ C.
> is a terminal object if there is exactly one arrow A→ >
for every A ∈ C.

(Note the duality.)

Examples: Set, Graph, transition systems, poset-as-category,
pointed sets

Arrows from terminal objects pick out elements.

Example: in Set, an element of a set A is the same as an arrow
> → A.

4 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Products and co-products

Definition: Let C be a category and A,B ∈ C objects.
A product of A and B consists of an object P = A× B of C
and (“projection”) arrows πA : P → A, πB : P → B with the
property that:
for any C ∈ C with arrows fA : C → A
and fB : C → B, there is exactly one
arrow fP : C → P for which
πA ◦ fP = fA and πB ◦ fP = fB

C
fA

��������� fB

��
???????

∃!fP
��

A PπA
oo

πb
// B

Dually: A co-product of A and B consists of an object
U = A t B of C and (“injection”) arrows ιA : A→ U,
ιB : B → U with the property that

A
ιA //

gA ��
??????? U

∃!gU
��

B
ιBoo

gB���������

C
5 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Products and co-products

Examples:
Products in Set, Graph, Mon
Co-products in Set, Graph, Mon
Co-products in Set∗ = > ↓ Set
Product in Graph vs. product in RGraph

6 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Equalizers and co-equalizers

Definition: Let C be a category and f ,g : A→ B ∈ C arrows.

An equalizer of f and g
consists of an object I ∈ C
and an arrow i : I → A for
which

C
i ′

''OOOOOOOOOOOOOO

i ′

��
//////////////

∃!k
��

I i
//

i
��

A
g
��

A
f
// B

A co-equalizer of f and g
consists of an object P ∈ C
and an arrow p : A→ P for
which

A
f //

g
��

B
p
��

p′

��
//////////////

B
p
//

p′
''OOOOOOOOOOOOOO P

∃!k
��

C

I i
// A

f //

g
// B p

// P

7 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Equalizers and co-equalizers

Example, in Set:

I i
// A

f //

g
// B p

// P

I = {x ∈ A | f (x) = g(x)}
i : I ↪→ A inclusion

P = set of equivalence classes B/∼, where ∼ is the
smallest equivalence relation for which f (x) ∼ g(x) for all
x ∈ A
p : x → [x]∼ projection

8 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Limits

A (commutative) diagram in a category C is a functor
F : D → C from a (usually quite small) category D.
A cone for such a diagram F consists of an object X ∈ C
and arrows fD : X → F (D) for all objects D ∈ D such that
for all arrows g : D → D′ ∈ D, F (D)

F (g)

��

X

fD 77nnnnnnnn

fD′ ''PPPPPPPP

F (D′)
A limit for such a diagram F is a cone (X , {fD}) such that
for all cones (X ′, {f ′D}), F (D)

F (g)

��

X ′

f ′
D

11

f ′
D′ --

∃!k // X
fD

77nnnnnnnn
fD′
''PPPPPPPP

F (D′)
9 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Limits

A (commutative) diagram in a category C is a functor
F : D → C from a (usually quite small) category D.
A cone for such a diagram F consists of an object X ∈ C
and arrows fD : X → F (D) for all objects D ∈ D such that
for all arrows g : D → D′ ∈ D, F (D)

F (g)

��

X

fD 77nnnnnnnn

fD′ ''PPPPPPPP

F (D′)

A cone for F consists of an object X ∈ C and a natural
transformation f : X̃ →̇ F , where X̃ : D → C is the constant
functor D 7→ X , f 7→ idX .
These form a category of cones over F .
A limit for F is a terminal object in this category.

10 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Co-limits

A co-cone for a diagram F : D → C consists of an object
X ∈ C and a natural transformation f : F →̇ X̃ , where
X̃ : D → C is the constant functor D 7→ X , f 7→ idX :

F (D)

F (g)

��

fD

''PPPPPPPP

X

F (D′)
fD′

77nnnnnnnn

A co-limit is a terminal object in the category of co-cones
over F :

F (D)

F (g)

��

fD ''PPPPPPPP
f ′
D

((
X ∃!k // X ′

F (D′)

fD′
77nnnnnnnn
f ′
D′

66

11 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Examples

terminal object = limit of the empty diagram
initial object = co-limit of the empty diagram

product A× B = limit of the diagram A B (no arrows)
co-product A t B = co-limit of the diagram A B (no
arrows)

equalizer of f ,g : A→ B = limit of the diagram A
f //

g
// B

co-equalizer of f ,g : A→ B = co-limit of the diagram

A
f //

g
// B

12 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Uniqueness up to isomorphism

Terminal and initial objects are
unique up to isomorphism

��

All limits and co-limits are
unique up to isomorphism

13 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Pullbacks and pushouts

A pullback is a limit of a
diagram

X

A×C B B

g

��

A
f

// C

A pushout is a co-limit of a
diagram

C
f //

g

��

A

B A tC B

X

14 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Pullbacks and pushouts

A pullback is a limit of a
diagram

X

A×C B
f ′

//

g′

��

B

g

��

A
f

// C

A pushout is a co-limit of a
diagram

C
f //

g

��

A

g′

��

B
f ′
// A tC B

X

15 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Pullbacks and pushouts

A pullback is a limit of a
diagram

X
j

%%

h

��

A×C B
f ′

//

g′

��

B

g

��

A
f

// C

A pushout is a co-limit of a
diagram

C
f //

g

��

A

g′

�� h

��

B
f ′
//

j
++

A tC B

X

16 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Pullbacks and pushouts

A pullback is a limit of a
diagram

X
j

%%

h

��

∃!k
""

A×C B
f ′

//

g′

��

B

g

��

A
f

// C

A pushout is a co-limit of a
diagram

C
f //

g

��

A

g′

�� h

��

B
f ′
//

j
++

A tC B

∃!k
""

X

17 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Adjoints preserve limits

Theorem: If G : E → C has a left adjoint and D : D → E has a
limit (X , f), then G ◦ D : D → C has limit (G(X),G ◦ f).

“Right adjoints preserve limits”

Dual theorem: If F : C → E has a right adjoint and D : D → C
has a co-limit (X , f), then G ◦ D : D → E has co-limit
(G(X),G ◦ f).

“Left adjoints preserve co-limits”

18 / 31

Categorical constructions for transition systems

9 Transition systems
10 Re-labeling
11 Product
12 Restriction
13 Parallel composition

Transition systems Re-labeling Product Restriction Composition

Transition systems

Recall: Category of transition systems = pointed arrow
category > ↓ RGraph→ RGraph1

objects > → T → GL
– terminal graph→ graph→ one-point graph
– initial point→ graph→ labeling
morphisms >

�������

��
<<<<<

T σ
//

��

T ′

��

GL λ
// G′L

20 / 31

Transition systems Re-labeling Product Restriction Composition

Re-labeling

Re-labeling of a transition system > → T → GL by a label
morphism λ : L→ L′⊥:

>

��

T

��

GL λ
// G′L

21 / 31

Transition systems Re-labeling Product Restriction Composition

Product

Product of transition systems > → T → GL, > → T ′ → G′L:

>

zzuuuuuuuuuuu

∃!i
�� $$IIIIIIIIII

T

`
��

T × T ′

∃!k
��

π1
oo

π2
// T ′

`′
��

GL GL ×G′Lπ1
oo

π2
// G′L

Arrows > i−→ T × T ′ k−→ GL ×G′L given uniquely because of
product.
The labeling is GL ×G′L = GLtL′tL×L′ , or

L⊥ × L′⊥ = {(a,b), (a,⊥), (⊥,b), (⊥,⊥) | a ∈ L,b ∈ L′}
This is the product in the category
> ↓ RGraph→ RGraph1

22 / 31

Transition systems Re-labeling Product Restriction Composition

Restriction

Restriction of a transition system > → T → GL to a subset
L′ ↪→ L:

Pullback >

��

 ##

X ′ //___

��
�
�
� X

��

G′L
� � // GL

23 / 31

Transition systems Re-labeling Product Restriction Composition

Parallel composition

For parallel composition (> → T → GL) || (> → T ′ → G′L):

1 Form product (> → T → GL)× (> → T ′ → G′L)

This is completely synchronized: contains all possible
combinations (a,b), (a,⊥), (⊥,b) of labels⇒ all
possible synchronizations

2 Restrict by an inclusion S ↪→ L⊥ × L′⊥
Specifies which synchronizations are allowed
For CCS: S = {(a, ā), (b, b̄), . . . }
For CSP: S = {(a,a), (b,b), . . . }
etc. (!)

3 Re-label
For CCS: (a, ā) 7→ τ, (b, b̄) 7→ τ, . . .
For CSP: (a,a) 7→ a, (b,b) 7→ b, . . .
etc.

24 / 31

Transition systems Re-labeling Product Restriction Composition

Parallel composition

Theorem: All types of parallel composition can be
expressed using product, restriction, and re-labeling.
Product: limit. Restriction: pullback – limit. Re-labeling:
composition

⇒ All types of parallel composition are combinations of limits
and composition.

⇒ All types of parallel composition are preserved by right
adjoints.

Recall: Unfolding from transition systems to
synchronization trees is a right adjoint
Corollary: If || is any type of parallel composition, then the
unfolding of a || is the || of the unfoldings.

25 / 31

Solutions to recursive domain equations

14 Domains; fixed-point theorem
15 Recursive domain equations
16 Generalized fixed-point theorem

Domains Recursive equations Fixed-point theorem

Domains; fixed-point theorem

Recall:
A domain is a set D together with a partial order
v ⊆ D × D

which contains a least element ⊥ ∈ D, and
in which every increasing chain x1 v x2 v · · · has a
least upper bound (lub).

A function f : D → D′ of domains is continuous if
f is monotone: x vD y ⇒ f (x) vD′ f (y), and
f preserves lub’s: for any increasing chain S ⊆ D,
f (lub S) = lub f (S).

Domains and continuous functions form a category Dom.
A fixed point of an endofunction f : D → D is an element
x ∈ D for which f (x) = x .
Fixed-point theorem: A continuous endofunction f : D → D
has a least fixed point x∗, and x∗ = lub{f i(⊥) | i ∈ N}.

27 / 31

Domains Recursive equations Fixed-point theorem

Recursive domain equations

Recall:
In operational semantics, we need recursively defined sets.
For example

EnvP = Pnavne ⇀ Kom× EnvP

This is actually a recursively defined domain (with subset
(“specializatin”) ordering v = ⊆)
This is quite common. For example untyped
lambda-calculus:

Expr = Expr ⇀ Expr

Or lambda-calculus with constants A:

Expr = A ∪ (Expr ⇀ Expr)

Problematic, because this does not work for general sets!
28 / 31

Domains Recursive equations Fixed-point theorem

Recursive domain equations

General question:
If F is a function from domains to domains: Under what
conditions does the equation D = F (D) have a meaningful
solution?

Solution by categorification:
Let F : Dom→ Dom be a functor. Find conditions under
which the equation D = F (D) has a least fixed point up to
isomorphism, and a way to compute it.

Definition (P-3.4.1): A fixed point for a functor F : Dom→ Dom
is a pair (D,d) of a domain D ∈ Dom and an isomorphism
d : F (D)→ D.
A pre-fixed point is a pair (D,d) with an arrow d : F (D)→ D.

Want to find an initial fixed point.

29 / 31

Domains Recursive equations Fixed-point theorem

Generalized fixed-point theorem

Pre-fixed points and fixed points form categories: arrows:

F (D)
F (f)
//

d
��

F (D′)

d ′
��

D
f

// D′

We are looking for an initial object in the category of fixed
points.
Lemma (P-3.4.2): An initial pre-fixed point is also an initial
fixed point.

30 / 31

Domains Recursive equations Fixed-point theorem

Generalized fixed-point theorem

The one-point domain ⊥ = {⊥} is both initial and terminal
in Dom.
Theorem: Let p : ⊥ → F (⊥) be the unique arrow, and look
at the (infinite) diagram

⊥ p
// F (⊥)

F (p)
// F 2(⊥)

F 2(p)
// F 3(⊥)

F 3(p)
// · · ·

F has an initial pre-fixed point, which is the co-limit of this
diagram.

This looks like

⊥ p
// F (⊥)

F (p)
// F 2(⊥)

F 2(p)
// F 3(⊥)

F 3(p)
// · · ·

D,,

XX++

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV))

SSSSSSSSSSSSSSSSSSSSSSSSSSSS%%

KKKKKKKKKKKKKKKKK

· · ·

(this is called a projective limit)
31 / 31

