Category Theory and Functional Programming

Day 3

21 October 2009

Constructions in categories

Categories

- \bullet Set of objects C_0
- \bullet Set of arrows C_1
- For each arrow $f \in C_1$, a domain $dom(f) \in C_0$ and a co -domain $\operatorname{cod}(f) \in \mathcal{C}_0$
- (Write $f : A \rightarrow B$ if $dom(f) = A$ and $cod(f) = B$)
- For each object $A \in C_0$, an identity arrow $\mathrm{id}_A \in C_0$
- For each $f_1 : A \rightarrow B$ and $f_2 : B \rightarrow C$, a composite $f_2 \circ f_1 : A \rightarrow C$,
- with associativity: $f_3 \circ (f_2 \circ f_1) = (f_3 \circ f_2) \circ f_1$ whenever these are defined,
- and identities: for all arrows $f : A \rightarrow B$, $f \circ id_A = f$ and $id_B \circ f = f$.
- *That's all folks:* \mathcal{C}_0 , \mathcal{C}_1 , *dom*, *cod* : $\mathcal{C}_1 \rightarrow \mathcal{C}_0$, id : $\mathcal{C}_0 \rightarrow \mathcal{C}_1$, \circ : $\mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_1 \rightarrow \mathcal{C}_1$

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

3 / 31

Initial and terminal objects

Definition: Let C be a category and \bot , $\top \in \mathcal{C}$ objects.

- ⊥ is an initial object if there is exactly one arrow ⊥ → *A* for every $A \in \mathcal{C}$.
- \bullet \top is a terminal object if there is exactly one arrow $A \rightarrow \top$ for every $A \in \mathcal{C}$.

```
(Note the duality.)
```
Examples: **Set**, **Graph**, transition systems, poset-as-category, pointed sets

Arrows from terminal objects pick out elements.

Example: in **Set**, an element of a set *A* is the same as an arrow $\top \rightarrow A$.

Products and co-products

Definition: Let C be a category and $A, B \in \mathcal{C}$ objects.

• A product of *A* and *B* consists of an object $P = A \times B$ of C and ("projection") arrows $\pi_A : P \to A$, $\pi_B : P \to B$ with the property that:

for any $C \in \mathcal{C}$ with arrows $f_A : C \to A$ and $f_B: C \to B$, there is exactly one arrow f_P : $C \rightarrow P$ for which $\pi_A \circ f_P = f_A$ and $\pi_B \circ f_P = f_B$

Dually: A co-product of *A* and *B* consists of an object $U = A \sqcup B$ of C and ("injection") arrows $\iota_A : A \to U$, $\iota_B:B\to U$ with the property that

5 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Products and co-products

Examples:

- Products in **Set**, **Graph**, **Mon**
- Co-products in **Set**, **Graph**, **Mon**
- Co-products in **Set**[∗] = > ↓ **Set**
- Product in **Graph** vs. product in **RGraph**

Equalizers and co-equalizers

Definition: Let C be a category and $f, g : A \rightarrow B \in C$ arrows.

An equalizer of *f* and *g* consists of an object $I \in \mathcal{C}$ and an arrow $i: I \rightarrow A$ for which

 $I \longrightarrow A$

A co-equalizer of *f* and *g* consists of an object $P \in \mathcal{C}$ and an arrow $p: A \rightarrow P$ for which

f

/

 $\frac{1}{g}$ *B p P*

Equalizers and co-equalizers

Example, in **Set**:

$$
I \longrightarrow A \xrightarrow{f} B \longrightarrow P
$$

$$
\bullet \ \ I = \{x \in A \mid f(x) = g(x)\}
$$

- \bullet *i* : $I \hookrightarrow A$ inclusion
- *P* = set of equivalence classes *B*/∼, where ∼ is the smallest equivalence relation for which $f(x) \sim g(x)$ for all *x* ∈ *A*
- *p* : *x* → [*x*][∼] projection

Limits

- \bullet A (commutative) diagram in a category C is a functor $F: \mathcal{D} \to \mathcal{C}$ from a (usually quite small) category \mathcal{D} .
- A cone for such a diagram *F* consists of an object $X \in \mathcal{C}$ and arrows $f_D: X \to F(D)$ for all objects $D \in \mathcal{D}$ such that for all arrows $g:D\to D'\in\mathcal{D},$

• A limit for such a diagram *F* is a cone $(X, \{f_D\})$ such that for all cones $(X', \{f'_D\})$,

9 / 31

Limits

- \bullet A (commutative) diagram in a category $\mathcal C$ is a functor $F: \mathcal{D} \to \mathcal{C}$ from a (usually quite small) category \mathcal{D} .
- A cone for such a diagram *F* consists of an object $X \in \mathcal{C}$ and arrows $f_D: X \to F(D)$ for all objects $D \in \mathcal{D}$ such that for all arrows $g: D \to D' \in \mathcal{D},$

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

- A cone for *F* consists of an object *X* ∈ C and a natural transformation $f : \tilde{X} \to F$, where $\tilde{X} : \mathcal{D} \to \mathcal{C}$ is the constant functor $D \mapsto X$, $f \mapsto id_X$.
- These form a category of cones over *F*.
- A limit for *F* is a terminal object in this category.

Co-limits

• A co-cone for a diagram $F: D \to C$ consists of an object $X \in \mathcal{C}$ and a natural transformation $f : F \to \tilde{X}$, where $\tilde{X}: \mathcal{D} \to \mathcal{C}$ is the constant functor $D \mapsto X$, $f \mapsto id_X$:

A co-limit is a terminal object in the category of co-cones over *F*:

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

11 / 31

Examples

- \bullet terminal object $=$ limit of the empty diagram
- \bullet initial object = co-limit of the empty diagram
- product $A \times B =$ limit of the diagram \overline{A} *B* (no arrows)
- co-product $A \sqcup B =$ co-limit of the diagram $\overline{A} \cdot \overline{B}$ (no arrows)
- equalizer of $f, g : A \rightarrow B =$ limit of the diagram $A = \frac{f}{f}$ / $\stackrel{\cdot }{g}\rightarrow B$

• co-equalizer of $f, g : A \rightarrow B =$ co-limit of the diagram *A f* / $\stackrel{\cdot }{g}\rightarrow B$

Uniqueness up to isomorphism

Terminal and initial objects are unique up to isomorphism

Pullbacks and pushouts

Pullbacks and pushouts

A pullback is a limit of a diagram

A pushout is a co-limit of a diagram

15 / 31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Pullbacks and pushouts

A pushout is a co-limit of a diagram

Pullbacks and pushouts

Adjoints preserve limits

Theorem: If $G : \mathcal{E} \to \mathcal{C}$ has a left adjoint and $D : \mathcal{D} \to \mathcal{E}$ has a limit (X, f) , then $G \circ D : D \to C$ has limit $(G(X), G \circ f)$.

"Right adjoints preserve limits"

Dual theorem: If $F: \mathcal{C} \to \mathcal{E}$ has a right adjoint and $D: \mathcal{D} \to \mathcal{C}$ has a co-limit (X, f) , then $G \circ D : D \rightarrow \mathcal{E}$ has co-limit $(G(X), G \circ f).$

"Left adjoints preserve co-limits"

Categorical constructions for transition systems

Transition systems

- Recall: Category of transition systems $=$ pointed arrow category > ↓ **RGraph** → **RGraph**¹
- \bullet objects $\top \rightarrow \mathcal{T} \rightarrow G_L$
	- $-$ terminal graph \rightarrow graph \rightarrow one-point graph
	- $-$ initial point \rightarrow graph \rightarrow labeling
- morphisms

Re-labeling

Re-labeling of a transition system $\top \rightarrow \mathcal{T} \rightarrow G_L$ by a label morphism $\lambda: \mathsf{L} \to \mathsf{L}'$ ′⊥
∶

Product

Product of transition systems $\top \rightarrow \mathcal{T} \rightarrow G_L^{} , \top \rightarrow \mathcal{T}' \rightarrow G_L'$:

Transition systems **Re-labeling Composition Product** Restriction **Restriction** Composition

- Arrows $\top \stackrel{i}{\to} \mathcal{T} \times \mathcal{T}' \stackrel{k}{\to} \mathcal{G}_L \times \mathcal{G}'_L$ given uniquely because of product.
- The labeling is $G_L \times G'_L = G_{L \sqcup L' \sqcup L \times L'}$, or

$$
L_{\perp} \times L'_{\perp} = \{(a,b), (a,\perp), (\perp,b), (\perp,\perp) \mid a \in L, b \in L'\}
$$

• This is the product in the category > ↓ **RGraph** → **RGraph**¹

Restriction

Restriction of a transition system $\top \rightarrow \mathcal{T} \rightarrow G_I$ to a subset $L' \hookrightarrow L$:

Pullback

Parallel composition

For parallel composition $(\top \rightarrow \mathcal{T} \rightarrow G_L) \,|| \, (\top \rightarrow \mathcal{T}' \rightarrow G_L')$:

Transition systems **Re-labeling Re-valued Product Restriction Composition**

- \bullet Form product $(\top \rightarrow \mathcal{T} \rightarrow G_{\mathsf{L}}) \times (\top \rightarrow \mathcal{T}' \rightarrow G_{\mathsf{L}}')$
	- This is completely synchronized: contains all possible combinations $(a, b), (a, \perp), (\perp, b)$ of labels \Rightarrow all possible synchronizations

2 Restrict by an inclusion $S \hookrightarrow L_\perp \times L'_{\perp}$ ⊥

- Specifies which synchronizations are allowed
- For CCS: $S = \{(a, \bar{a}), (b, \bar{b}), \dots\}$
- For CSP: $S = \{(a, a), (b, b), \dots\}$
- \bullet etc. $(!)$
- ³ Re-label
	- For CCS: $(a, \bar{a}) \mapsto \tau$, $(b, \bar{b}) \mapsto \tau$, ...
	- For CSP: $(a, a) \mapsto a, (b, b) \mapsto b, \ldots$
	- etc.

Parallel composition

- Theorem: All types of parallel composition can be expressed using product, restriction, and re-labeling.
- Product: limit. Restriction: pullback limit. Re-labeling: composition
- \Rightarrow All types of parallel composition are combinations of limits and composition.
- ⇒ All types of parallel composition are preserved by right adjoints.
- Recall: Unfolding from transition systems to synchronization trees is a right adjoint
- Corollary: If $||$ is any type of parallel composition, then the unfolding of a $||$ is the $||$ of the unfoldings.

25 / 31

Solutions to recursive domain equations

14 Domains; fixed-point theorem 15 Recursive domain equations 16 Generalized fixed-point theorem

Domains; fixed-point theorem

Recall:

- A domain is a set *D* together with a partial order
	- $\square \subset D \times D$
		- which contains a least element ⊥ ∈ *D*, and
		- in which every increasing chain $x_1 \sqsubseteq x_2 \sqsubseteq \cdots$ has a least upper bound (lub).
- A function $f: D \to D'$ of domains is continuous if
	- *f* is monotone: $x \sqsubseteq_D y \Rightarrow f(x) \sqsubseteq_{D'} f(y)$, and
	- *f* preserves lub's: for any increasing chain *S* ⊆ *D*, $f(\text{lub }S) = \text{lub } f(S)$.
- Domains and continuous functions form a category **Dom**.
- A fixed point of an endofunction $f: D \to D$ is an element $x \in D$ for which $f(x) = x$.
- Fixed-point theorem: A continuous endofunction *f* : *D* → *D* has a least fixed point x^* , and $x^* = \text{lub}\{f^i(\bot) \mid i \in \mathbb{N}\}.$

27 / 31

Domains **Example 20 Recursive equations Recursive equations Fixed-point theorem**

Recursive domain equations

Recall:

• In operational semantics, we need recursively defined sets. For example

```
Env_P = Pnavne \rightarrow Kom \times Env<sub>P</sub>
```
- This is actually a recursively defined domain (with subset ("specializatin") ordering $\sqsubseteq = \subseteq$)
- This is quite common. For example untyped lambda-calculus:

$\mathsf{Expr} = \mathsf{Expr} \rightarrow \mathsf{Expr}$

Or lambda-calculus with constants *A*:

```
\mathsf{Expr} = A \cup (\mathsf{Expr} \rightarrow \mathsf{Expr})
```
• Problematic, because this does not work for general sets!

Recursive domain equations

General question:

• If *F* is a function from domains to domains: Under what conditions does the equation $D = F(D)$ have a meaningful solution?

Solution by categorification:

• Let $F : Dom \rightarrow Dom$ be a functor. Find conditions under which the equation $D = F(D)$ has a least fixed point up to isomorphism, and a way to compute it.

Definition (P-3.4.1): A fixed point for a functor $F : Dom \rightarrow Dom$ is a pair (D, d) of a domain $D \in$ **Dom** and an isomorphism $d: F(D) \rightarrow D$.

A pre-fixed point is a pair (D, d) with an arrow $d : F(D) \to D$.

• Want to find an initial fixed point.

29 / 31

Domains **Example 20 CONFIDENTIAL EXAMPLE 20 ACCOUNTED RECULS** Recursive equations **Fixed-point theorem**

Generalized fixed-point theorem

• Pre-fixed points and fixed points form categories: arrows:

- We are looking for an initial object in the category of fixed points.
- Lemma (P-3.4.2): An initial pre-fixed point is also an initial fixed point.

Generalized fixed-point theorem

- The one-point domain $\bot = {\bot}$ is both initial and terminal in **Dom**.
- Theorem: Let $p: \bot \to F(\bot)$ be the unique arrow, and look at the (infinite) diagram

$$
\perp\stackrel{p}{\longrightarrow} \digamma(\perp)\stackrel{\digamma(p)}{\longrightarrow} \digamma^2(\perp)\stackrel{\digamma^2(p)}{\longrightarrow} \digamma^3(\perp)\stackrel{\digamma^3(p)}{\longrightarrow}\cdots
$$

F has an initial pre-fixed point, which is the co-limit of this diagram.

• This looks like

⊥ *p* /*F*(⊥) *F*(*p*) /*F* 2 (⊥) *F* 2 (*p*) /*F* 3 (⊥) *F* 3 (*p*) / · · · *D* , XX⁺ VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV) SSSSSSSSSSSSSSSSSSSSSSSSSSSS% KKKKKKKKKKKKKKKKK · · ·

(this is called a projective limit)

31 / 31