Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Category Theory and Functional Programming

Day 3

21 October 2009

Constructions in categories

ω 4 π σ Products and co-products Limits and co-limits Equalizers and co-equalizers Initial and terminal objects Categories Pullbacks and pushouts Uniqueness up to isomorphism

Adjoints preserve (co-)limits

Categories

- Set of objects C₀
- Set of arrows C₁
- (Write $f : A \rightarrow B$ if dom(f) = A and cod(f) = B) • For each arrow $f \in C_1$, a domain $dom(f) \in C_0$ and a co-domain $cod(f) \in C_0$
- For each object $A \in C_0$, an identity arrow $id_A \in C_0$
- For each $f_1 : A \rightarrow B$ and $f_2 : B \rightarrow C$, a composite $f_2 \circ f_1 : A \to C,$
- and identities: for all arrows $f : A \rightarrow B$, $f \circ id_A = f$ and • with associativity: $f_3 \circ (f_2 \circ f_1) = (f_3 \circ f_2) \circ f_1$ whenever these are defined,
- That's all folks: $\mathsf{id}_B \circ f = f.$
- $\mathcal{C}_0, \mathcal{C}_1, \textit{dom}, \textit{cod}: \mathcal{C}_1 \rightarrow \mathcal{C}_0, \textit{id}: \mathcal{C}_0 \rightarrow \mathcal{C}_1, \circ: \mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_1 \rightarrow \mathcal{C}_1$

3/31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Initial and terminal objects

Definition: Let C be a category and $\bot, \top \in C$ objects

- \perp is an initial object if there is exactly one arrow $\perp \rightarrow A$ for every $A \in C$.
- \top is a terminal object if there is exactly one arrow $A \rightarrow T$ for every $A \in C$.

(Note the duality.)

pointed sets Examples: Set, Graph, transition systems, poset-as-category,

Arrows from terminal objects pick out elements

Example: in **Set**, an element of a set A is the same as an arrow

 $\dashv \rightarrow A$.

Definition: Let C be a category and $A, B \in C$ objects

• A product of A and B consists of an object P = A × B of C property that: and ("projection") arrows $\pi_A : P \to A, \pi_B : P \to B$ with the

 $\pi_A \circ f_P = f_A \text{ and } \pi_B \circ f_P = f_B$ arrow $f_P : C \to P$ for which and $f_B : C \to B$, there is exactly one for any $C \in C$ with arrows $f_A : C \rightarrow A$ $A \leftarrow \pi_A$

 Dually: A co-product of A and B consists of an object $\iota_{B}: B \to U$ with the property that $U = A \sqcup B$ of C and ("injection") arrows $\iota_A : A \to U$,

5/31

Products and co-products

Categories

Initial objects

Products

Equalizers

Limits

Uniqueness

Pullbacks

Adjoints

Examples

- Products in Set, Graph, Mon
- Co-products in Set, Graph, Mon
- Co-products in Set_{*} = ⊤ ↓ Set
- Product in Graph vs. product in RGraph

Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Equalizers and co-equalizers

Definition: Let C be a category and $f, g : A \rightarrow B \in C$ arrows.

7/31

≯ ₩

₩**B** -

≁ ס

Equalizers and co-equalizers

Example, in Set:

$$I \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{p} P$$

•
$$I = \{x \in A \mid f(x) = g(x)$$

• $i : I \hookrightarrow A$ inclusion

- P = set of equivalence classes B/\sim , where \sim is the smallest equivalence relation for which $f(x) \sim g(x)$ for all $x \in A$
- $p: x \to [x]_{\sim}$ projection

 A co-limit is a terminal object in the category of co-cones over F:

F(D')

Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

11/31

Examples

- terminal object = limit of the empty diagram
- initial object = co-limit of the empty diagram
- product A × B = limit of the diagram A B (no arrows)
 co-product A ⊔ B = co-limit of the diagram A B (no arrows)
- equalizer of $f, g : A \to B =$ limit of the diagram $A \xrightarrow{f} B$
- co-equalizer of $f, g : A \rightarrow B =$ co-limit of the diagram

Adjoints

15/31

Adjoints

Categorical constructions for transition systems

Pullbacks and pushouts

Re-labeling Product

Transition systems

Restriction

Parallel composition

Adjoints	17/3
Pullbacks	
Uniqueness	
Limits	
Equalizers	
Products	
Initial objects	
ategories	

Adjoints preserve limits

Theorem: If $G : \mathcal{E} \to \mathcal{C}$ has a left adjoint and $D : \mathcal{D} \to \mathcal{E}$ has a limit (X, f), then $G \circ D : \mathcal{D} \to \mathcal{C}$ has limit $(G(X), G \circ f)$.

"Right adjoints preserve limits"

Dual theorem: If $F : \mathcal{C} \to \mathcal{E}$ has a right adjoint and $D : \mathcal{D} \to \mathcal{C}$ has a co-limit (X, f), then $G \circ D : \mathcal{D} \to \mathcal{E}$ has co-limit $(G(X), G \circ f)$.

"Left adjoints preserve co-limits"

Transition systems Re-labeling Product Restriction

Composition

Transition systems

- Recall: Category of transition systems = pointed arrow category ⊤ ↓ RGraph → RGraph¹
- objects $\top \to T \to G_L$
- terminal graph \rightarrow graph \rightarrow one-point graph - initial point \rightarrow graph \rightarrow labeling
- morphisms

Re-labeling

Product

Restriction

Composition

Pullback

Re-labeling Product Restriction

Composition

23/31

Parallel composition

For parallel composition $(\top \rightarrow T \rightarrow G_L) \parallel (\top \rightarrow T' \rightarrow G'_L)$:

• Form product $(\top \rightarrow T \rightarrow G_L) \times (\top \rightarrow T' \rightarrow G'_L)$

 This is completely synchronized: contains all possible combinations $(a, b), (a, \bot), (\bot, b)$ of labels \Rightarrow all possible synchronizations

Restrict by an inclusion ${\boldsymbol{S}} \hookrightarrow {\boldsymbol{L}}_\perp \times {\boldsymbol{L}}'_\perp$

Specifies which synchronizations are allowed

• For CCS: $S = \{(a, \bar{a}), (b, \bar{b}), ...\}$

• For CSP: $S = \{(a, a), (b, b), ...\}$

• etc. (!)

Re-label

• For CCS: $(a, \overline{a}) \mapsto \tau, (b, \overline{b}) \mapsto \tau, \ldots$

• etc. • For CSP: $(a, a) \mapsto a, (b, b) \mapsto b, \ldots$

Re-labeling	Product	Restriction	Composition	Domains
position				Don
m: All types of pa	arallel composi	tion can be		Π
m: All types of pased using product	arallel composi t, restriction, at	tion can be nd re-labeling.		
t: limit. Restrict sition	ion: pullback –	limit. Re-lab	eling:	
s of parallel com nposition.	position are co	mbinations of	imits	
s of parallel com 3.	position are pr	eserved by righ	1t	
Unfolding from to mization trees is	ransition syster a right adjoint	ms to		
ry: If is any typ 1g of a is the	e of parallel co of the unfolding	mposition, thei gs.	n the	
	Pe-tabeling m: All types of posed using product: t: limit. Restrict sition s of parallel com mposition. s of parallel com s. Unfolding from t unfolding from t pry: If is any typ ng of a is the	Product Position Product Product, Parallel composi- product, restriction, and t: limit. Restriction: pullback – sition s of parallel composition are co- mposition. s of parallel composition are pro- s. Unfolding from transition system onization trees is a right adjoint ry: If is any type of parallel co- product of the unfolding	Relabeling Product Restriction Iposition m: All types of parallel composition can be sed using product, restriction, and re-labeling. sed using product, restriction, and re-labeling. t: limit. Restriction: pullback – limit. s of parallel composition are combinations of I mposition. s of parallel composition are preserved by rights. s of parallel composition systems to onization trees is a right adjoint ry: If is any type of parallel composition, then of a is the of the unfoldings.	Relabing Product Restriction Composition Iposition m: All types of parallel composition can be sed using product, restriction, and re-labeling. t: limit. Restriction: pullback – limit. Re-labeling. t: limit. Restriction: pullback – limit. Re-labeling: s of parallel composition are combinations of limits mposition. s of parallel composition are preserved by right s. Unfolding from transition systems to onization trees is a right adjoint ry: If is any type of parallel composition, then the onization trees is a right adjoint ry: If is the of the unfoldings.

Solutions to recursive domain equations

25/31

16 15 14 Generalized fixed-point theorem Recursive domain equations Domains; fixed-point theorem

Domains; fixed-point theorem

Recursive equations

Fixed-point theorem

Recall:

- A domain is a set D together with a partial order $\Box \subseteq D \times D$
- which contains a least element $\bot \in D$, and
- in which every increasing chain $x_1 \sqsubseteq x_2 \sqsubseteq \cdots$ has a least upper bound (lub).
- A function $f: D \rightarrow D'$ of domains is continuous if
- *f* is monotone: $x \sqsubseteq_D y \Rightarrow f(x) \sqsubseteq_{D'} f(y)$, and
- *f* preserves lub's: for any increasing chain $S \subseteq D$, $f(\operatorname{lub} S) = \operatorname{lub} f(S).$
- Domains and continuous functions form a category Dom
- A fixed point of an endofunction $f: D \rightarrow D$ is an element $x \in D$ for which f(x) = x.
- Fixed-point theorem: A continuous endofunction $f: D \rightarrow D$ has a least fixed point x^* , and $x^* = \text{lub}\{t'(\bot) \mid i \in \mathbb{N}\}.$

Recursive equations

Domains

Fixed-point theorem

27/31

Recursive domain equations

Recall:

In operational semantics, we need recursively defined sets.

For example

 $Env_P = Pnavne \rightarrow Kom \times Env_P$

- This is actually a recursively defined domain (with subset ("specializatin") ordering $\sqsubseteq = \subseteq$)
- This is quite common. For example untyped lambda-calculus:

 $Expr = Expr \rightarrow Expr$

Or lambda-calculus with constants A:

 $Expr = A \cup (Expr \rightarrow Expr)$

Problematic, because this does not work for general sets!

 We are looking for an initial object in the category of fixed points. 	$ \begin{array}{c} F(D) \xrightarrow{f'(D')} F(D') \\ \downarrow \\ D \xrightarrow{f'} D' \\ \downarrow \\ f' \\ D' \end{array} $	Pre-fixed points and fixed points form categories: arrows:	Generalized fixed-point theorem	Domains Recursive equations Fixed-point theorem	 Want to find an initial fixed point. 	$d : F(D) \rightarrow D$. A pre-fixed point is a pair (<i>D</i> , <i>d</i>) with an arrow $d : F(D) \rightarrow D$.	Definition (P-3.4.1): A fixed point for a functor F : Dom \rightarrow Dom is a pair (D, d) of a domain $D \in$ Dom and an isomorphism	 Solution by categorification: Let F : Dom → Dom be a functor. Find conditions under which the equation D = F(D) has a least fixed point up to isomorphism, and a way to compute it. 	 General question: If F is a function from domains to domains: Under what conditions does the equation D = F(D) have a meaningful solution? 	Recursive domain equations	Domains Recursive equations Fixed-point theorem
								•	• •	Genera	Domains

Recursive equations

Fixed-point theorem

- The one-point domain $\bot = \{\bot\}$ is both initial and terminal in **Dom**.
- Theorem: Let $p: \bot \to F(\bot)$ be the unique arrow, and look at the (infinite) diagram

$$\perp \xrightarrow{\rho} F(\perp) \xrightarrow{F(\rho)} F^2(\perp) \xrightarrow{F^2(\rho)} F^3(\perp) \xrightarrow{F^3(\rho)} \cdots$$

diagram. F has an initial pre-fixed point, which is the co-limit of this

(this is called a projective limit)

31/31

Lemma (P-3.4.2): An initial pre-fixed point is also an initial

fixed point.