Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Category Theory and Functiona Programming

Day 3

21 October 2009

Constructions in categories

ω $\left(4\right)$ to $\left(0\right)$ Limits and co-limits Equalizers and co-equalizers Products and co-products Initial and terminal objects Categories Adjoints preserve (co-)limits Pullbacks and pushouts Uniqueness up to isomorphism

Categories

- Set of objects C_0
- Set of arrows C_1
- (Write $f: A \rightarrow B$ if dom(f) = A and cod(f) = B) • For each arrow $f \in C_1$, a domain dom(f) $\in C_0$ and a co-domain $cod(f) \in \mathcal{C}_0$
-
- \bullet For each object $A\in \mathcal{C}_0,$ an identity arrow id $_{\mathcal{A}}\in \mathcal{C}_0$
- For each $\mathfrak{h}:\mathcal{A}\rightarrow B$ and $\mathfrak{h}:B\rightarrow\mathcal{C},$ a composite $\mathfrak{h}_\circ\mathfrak{h}:\mathcal{A}\rightarrow\mathcal{C},$ \bullet with associativity: $\mathfrak{h}\circ(\mathfrak{h}\circ\mathfrak{t}_{1})=(\mathfrak{h}\circ\mathfrak{h}_{2})\circ\mathfrak{t}_{1}$ whenever these
- and identities: for all arrows $f: A \rightarrow B, f \circ \text{id}_A = f$ and are defined, id_B of = f.
- \bullet That's all folks:
- $\mathcal{C}_0,\mathcal{C}_1,\mathsf{dom},\mathsf{cod}:\mathcal{C}_1\to\mathcal{C}_0,\mathsf{id}:\mathcal{C}_0\to\mathcal{C}_1,\circ:\mathcal{C}_1\times_{\mathcal{C}_0}\mathcal{C}_1\to\mathcal{C}_1$

3/31

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Initial and terminal objects

Definition: Let ${\cal C}$ be a category and $\perp, \top \in {\cal C}$ objects

- \bullet \perp is an initial object if there is exactly one arrow \perp \rightarrow A for every $A \in \mathcal{C}$.
- \top is a terminal object if there is exactly one arrow ${\sf A} \to \top$ for every $A \in \mathcal{C}$.

(Note the duality.)

pointed sets Examples: Set, Graph, transition systems, poset-as-category,

Arrows from terminal objects pick out elements

 $\top \rightarrow A.$ Example: in Set, an element of a set A is the same as an arrow

Definition: Let ${\cal C}$ be a category and $A, B \in {\cal C}$ objects

 \bullet A product of A and B consists of an object $P = A \times B$ of C and ("projection") arrows $\pi_\mathcal{A} : \mathsf{P} \to \mathcal{A}, \pi_B : \mathsf{P} \to B$ with the for any ${\mathcal C}\in{\mathcal C}$ with arrows $f_{\mathsf A}:{\mathcal C}\to{\mathsf A}$ property that:

 \bullet Dually: A co-product of A and B consists of an object ι_B : $B \to U$ with the property that $U = A \sqcup B$ of ${\cal C}$ and ("injection") arrows $\iota_A : A \to U,$

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

5/31

Products and co-products

Examples

- · Products in Set, Graph, Mon
- · Co-products in Set, Graph, Mon
- \bullet Co-products in Set_{*} = \top \downarrow Set
- · Product in Graph vs. product in RGraph

Uniqueness

Pullbacks

Adjoints

consists of an object $I \in \mathcal{C}$ An equalizer of f and g Definition: Let ${\cal C}$ be a category and $f,g:A\to B\in{\cal C}$ arrows consists of an object $P \in \mathcal{C}$ A co-equalizer of f and g

which

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

7/31

Equalizers and co-equalizers

Example, in Set:

$$
1 \xrightarrow{\text{!}} A \xrightarrow{\text{!}} B \xrightarrow{\text{!}} B \xrightarrow{\text{!}} P
$$

\n- $$
0
$$
 $I = \{x \in A \mid f(x) = g(x)$
\n- $i : I \hookrightarrow A$ inclusion
\n

- $P =$ set of equivalence classes B/\sim , where \sim is the
- $x \in A$ smallest equivalence relation for which $f(\mathsf{x}) \sim g(\mathsf{x})$ for all
- \bullet p : x \rightarrow [x] \sim projection

- $X: \mathcal{D} \to \mathcal{C}$ is the constant functor $D \mapsto X,$ $\mathsf{f} \mapsto \mathrm{id}_X$: $X\in \mathcal{C}$ and a natural transformation $f:\digamma\to X,$ where $F(g)$ $F(D)$ $\stackrel{\scriptscriptstyle \vee}{\times}$
- A co-limit is a terminal object in the category of co-cones $F(D)$

over F:

Examples

Initial objects

Products

Equalizers

Limits

Uniqueness

Pullbacks

Adjoints

11/31

- terminal object = limit of the empty diagram
- initial object = co-limit of the empty diagram
- product $A \times B =$ limit of the diagram A B (no arrows)
- co-product $A \sqcup B =$ co-limit of the diagram A B (no arrows)
- \bullet equalizer of $f,g:A\to B=$ limit of the diagram $A=\frac{1}{g}$ \star B
- co-equalizer of $f,g:A\to B=$ co-limit of the diagram

Adjoints

 $15/31$

Adjoints

Pullbacks and pushouts

Adjoints preserve limits

Theorem: If $G: \mathcal{E} \to \mathcal{C}$ has a left adjoint and $D: \mathcal{D} \to \mathcal{E}$ has a
limit $(X,f),$ then $G \circ D: \mathcal{D} \to \mathcal{C}$ has limit $(G(X), G \circ f).$

"Right adjoints preserve limits"

Dual theorem: If $F:\mathcal{C}\to\mathcal{E}$ has a right adjoint and $D:\mathcal{D}\to\mathcal{C}$ has a co-limit (X, f) , then $G \circ D : \mathcal{D} \to \mathcal{E}$ has co-limit $(G(X), G\circ f)$

· "Left adjoints preserve co-limits"

Transition systems Re-labeling Product Restriction

Composition

Transition systems

- \bullet Recall: Category of transition systems = pointed arrow category T J RGraph → RGraph'
- \bullet objects $\top \rightarrow \tau \rightarrow G_L$
- initial point → graph → labeling $-$ terminal graph \rightarrow graph \rightarrow one-point graph
- o morphisms

Re-labeling

Product

Restriction

Composition

Re-labeling Product Restriction Composition

23/31

Parallel composition

For parallel composition ($\top \to \mathcal{T} \to \mathcal{G}_L) \parallel (\top \to \mathcal{T}' \to \mathcal{G}'_L)$:

 \bullet Form product ($\top \rightarrow \tau \rightarrow G_{\mathsf{L}}) \times (\top \rightarrow \tau' \rightarrow G_{\mathsf{L}}')$

● This is completely synchronized: contains all possible possible synchronizations combinations $(a,b),(a,\bot),(\bot,b)$ of labels \Rightarrow all

Restrict by an inclusion $S \hookrightarrow L_\perp \times L'_\perp$

• Specifies which synchronizations are allowed

• For CCS: $S = \{(a, \bar{a}), (b, \bar{b}), ...$

 \bullet For CSP: $S = \{(a, a), (b, b), \ldots$

 \bullet etc. (!)

3 Re-label

● For CCS: $(a, \bar{a}) \mapsto \tau, (b, b) \mapsto \tau, ...$

● For CSP (a, a) → $a, (b, b)$ → $b, ...$

22/31

24/31

- Recall: Unfolding from transition systems to synchronization trees is a right adjoint
- Corollary: If || is any type of parallel composition, then the unfolding of a || is the || of the unfoldings.

Solutions to recursive domain equations

Generalized fixed-point theorem Recursive domain equations Domains; fixed-point theorem

Domains; fixed-point theorem

Recursive equations

Domains

Recall:

- . A domain is a set D together with a partial order \sqsubseteq D \times D
- \bullet which contains a least element $\bot \in D,$ and
- in which every increasing chain x₁ \sqsubseteq x₂ \sqsubseteq … has a least upper bound (lub).
- A function $f: D \to D'$ of domains is continuous if
- f is monotone: $x \sqsubseteq_D y \Rightarrow f(x) \sqsubseteq_D f(y)$, and
- *f* preserves lub's: for any increasing chain $S \subseteq D,$
 $f(\mathsf{lab}\ S) = \mathsf{lab}\,f(S).$
- Domains and continuous functions form a category Dom
- A fixed point of an endofunction $f:D\to D$ is an element $x \in D$ for which $f(x) = x$.
- \bullet Fixed-point theorem: A continuous endofunction $t:D\to D$ has a least fixed point x^* , and $x^* = \text{lub}\{f'(\bot) \mid i \in \mathbb{N}\}$.
-

Domains

Recursive equations

25/31

Fixed-point theorem

27/31

Recursive domain equations

Recall:

· In operational semantics, we need recursively defined sets.

For example

Env $_\mathtt{p} = \mathsf{P}$ navne \to Kom \times Env $_\mathtt{a}$

- This is actually a recursively defined domain (with subset $(\supseteq) = \supseteq 0$ ordering \supseteq
- This is quite common. For example untyped lambda-calculus:

 $Expr = Expr - Expr$

 \bullet Or lambda-calculus with constants A:

 $\mathsf{Expr} = A \cup (\mathsf{Expr} \rightarrow \mathsf{Expr})$

• Problematic, because this does not work for general sets!

 \vdots

 \overline{C}

31/31

30/31

Recursive equations