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Categories

Categories

Set of objects Cy
Set of arrows C;

For each arrow f € Cy, a domain dom(f) € Cy and a
co-domain cod(f) € Cy
(Write f : A — Bif dom(f) = A and cod(f) = B)

For each object A € Cy, an identity arrow id4 € Cy

Foreach f; : A— Band f, : B— C, a composite
hofi:A— C,

with associativity: fzo (b o f;) = (f3 o f») o f; whenever these
are defined,

and identities: for all arrows f : A — B, foidg = f and
idgof = f.

That's all folks:
Co,C1,d0m,COd :Cy — Co,id :Cy — Cqy,0: Cq Xy C1 — Cq



Initial objects

Initial and terminal objects

Definition: Let C be a category and L, T € C objects.

@ 1 is aninitial object if there is exactly one arrow | — A for
every A e C.

@ T is a terminal object if there is exactly one arrow A — T
for every A € C.

(Note the duality.)

Examples: Set, Graph, transition systems, poset-as-category,
pointed sets

Arrows from terminal objects pick out elements.

Example: in Set, an element of a set A is the same as an arrow
T — A



Products

Products and co-products

Definition: Let C be a category and A, B € C objects.

@ A product of A and B consists of an object P = A x Bof C
and (“projection”) arrows w4 : P — A, mg : P — B with the

property that:

forany C € Cwitharrows f, : C — A C

and fg : C — B, there is exactly one fa Ié fa
arrow fp : C — P for which /H'vf”\
mpofp=Ffpandmgofp =1z AWPTB

@ Dually: A co-product of A and B consists of an object
U= AL Bof C and (“injection”) arrows 14 : A — U,

tg : B — U with the property that s '8
A— U<«—B

3!E
C



Products
Products and co-products

Examples:
@ Products in Set, Graph, Mon
@ Co-products in Set, Graph, Mon
@ Co-products in Set, = T | Set
@ Product in Graph vs. product in RGraph



Equalizers

Equalizers and co-equalizers

Definition: Let C be a category and f,g : A— B € C arrows.

An equalizer of f and g A co-equalizer of fand g
consists of an object / € C consists of an object P € C
and an arrow / : | — Afor and an arrow p : A — P for
which which




Equalizers

Equalizers and co-equalizers

Example, in Set:

f
/ﬁA?BTP

o /I={xeA|f(x)=g(x)}
@ j: /| — Ainclusion

@ P = set of equivalence classes B/~, where ~ is the
smallest equivalence relation for which f(x) ~ g(x) for all
xeA

@ p: x — [x]. projection



Limits

Limits

@ A (commutative) diagram in a category C is a functor
F : D — C from a (usually quite small) category D.

@ A cone for such a diagram F consists of an object X € C
and arrows fp : X — F(D) for all objects D € D such that

forallarrows g: D — D' € D, F(D)
fp
X< hF(g)
v T RD)
@ A limit for such a diagram F is a cone (X, {fp}) such that
for all cones (X', {f5}), " F(D)

fo
X 3ker X l"—(g)

\ﬂ)

o F(D')



Limits

Limits

@ A (commutative) diagram in a category C is a functor
F : D — C from a (usually quite small) category D.

@ A cone for such a diagram F consists of an object X € C
and arrows fp : X — F(D) for all objects D € D such that

for allarrows g : D — D' € D, . _F(D)
D
x< lF(g)
v T RD)

@ A cone for F consists of an object X € C and a natural
transformation f : X - F, where X : D — C is the constant
functor D — X, f — idy.

@ These form a category of cones over F.
@ A limit for F is a terminal object in this category.



Limits

Co-limits

@ A co-cone for a diagram F : D — C consists of an object
)~( ¢ C and a natural transformation f : F — X, where
X : D — C is the constant functor D — X, f +— idy:

FO)
F(g)‘ > X
Fo) ™
@ A co-limit is a terminal object in the category of co-cones
over F:
F(D) b
fD\J\
F(g)‘ ] X 3k X!
D/



Limits

Examples

@ terminal object = limit of the empty diagram
@ initial object = co-limit of the empty diagram

@ product A x B = limit of the diagram A B (no arrows)

@ co-product ALI B = co-limit of the diagram A B (no
arrows)

@ equalizer of f,g : A — B = limit of the diagram A :;; B
@ co-equalizer of f, g : A — B = co-limit of the diagram
A——B



Uniqueness

Uniqueness up to isomorphism

Terminal and initial objects are
unique up to isomorphism

M

All limits and co-limits are
unique up to isomorphism



Pullbacks and pushouts

A pullback is a limit of a A pushout is a co-limit of a
diagram diagram



Pullbacks

Pullbacks and pushouts

A pullback is a limit of a A pushout is a co-limit of a
diagram diagram

1,

AxcB——B B——AlcB



Pullbacks and pushouts

A pullback is a limit of a A pushout is a co-limit of a
diagram diagram

A
AXCB—>B —— Al B §
‘ j
C

A—>

WO



Pullbacks

Pullbacks and pushouts

A pullback is a limit of a A pushout is a co-limit of a
diagram diagram

1,

B— " Au.B




Adjoints

Adjoints preserve limits

Theorem: If G: £ — C has a left adjointand D : D — £ has a
limit (X, f), then Go D : D — C has limit (G(X), G o f).

@ “Right adjoints preserve limits”

Dual theorem: If F : C — &£ has aright adjointand D: D — C
has a co-limit (X, f), then Go D : D — &£ has co-limit
(G(X),Gof).

@ “Left adjoints preserve co-limits”



Categorical constructions for transition systems

Transition systems
Re-labeling

Product

Restriction

Parallel composition



Transition systems

Transition systems

@ Recall: Category of transition systems = pointed arrow
category T | RGraph — RGraph'

@ objects T — T — G,
— terminal graph — graph — one-point graph
— initial point — graph — labeling

N

T——T

| |

GLﬁG/L

@ morphisms



Re-labeling

Re-labeling

Re-labeling of a transition system T — T — G, by a label
morphism A : L — L', :



Product

Product

Product of transition systems T — T — G, T — T' — G|:

ElY
T TxT ——T
el 3k Jel
o Arows T - Tx T/ & G, x G| given uniquely because of

product.
@ The labelingis G, x G| = G111/, OF

L, xU' ={(ab),(a L), (L,b),(L,1L)|acLbel}

@ This is the product in the category
T | RGraph — RGraph'



Restriction

Restriction

Restriction of a transition system T — T — G, to a subset
L' — L:

Pullback




Composition
Parallel composition

For parallel composition (T — T — G.) || (T — T' — G)):

@ Formproduct (T — T — G) x (T — T — G))
e This is completely synchronized: contains all possible
combinations (a, b), (a, L), (L, b) of labels = all
possible synchronizations

@ Restrict by aninclusion S — L, x L',

e Specifies which synchronizations are allowed
e For CCS: S={(a,a),(b,b),...}
e For CSP: S={(a,a),(b,b),...}
e etc. (1)
© Re-label
e For CCS:(a,a@) — 7,(b,b) — T,
e For CSP: (a,a) — a,(b,b) — b,

e etc.



Composition

Parallel composition

@ Theorem: All types of parallel composition can be
expressed using product, restriction, and re-labeling.

@ Product: limit. Restriction: pullback — limit. Re-labeling:
composition

= All types of parallel composition are combinations of limits
and composition.

= All types of parallel composition are preserved by right
adjoints.

@ Recall: Unfolding from transition systems to
synchronization trees is a right adjoint

@ Corollary: If || is any type of parallel composition, then the
unfolding of a || is the || of the unfoldings.



Solutions to recursive domain equations

Domains; fixed-point theorem
Recursive domain equations
Generalized fixed-point theorem



Domains

Domains; fixed-point theorem

Recall:
@ A domain is a set D together with a partial order
CCDxD

e which contains a least element L € D, and
e in which every increasing chain xy C x» C --- has a
least upper bound (lub).
@ Afunction f: D — D' of domains is continuous if
e fismonotone: x Cp y = f(x) Cp f(y), and
o f preserves lub’s: for any increasing chain S C D,
f(lub S) = lub f(S).
@ Domains and continuous functions form a category Dom.
@ A fixed point of an endofunction f : D — D is an element
x € D for which f(x) = x.
@ Fixed-point theorem: A continuous endofunction f: D — D
has a least fixed point x*, and x* = lub{f/(L) | i € N}.



Recursive equations

Recursive domain equations

Recall:

@ In operational semantics, we need recursively defined sets.
For example

Envp = Pnavne — Kom x Envp

@ This is actually a recursively defined domain (with subset
(“specializatin”) ordering C = Q)

@ This is quite common. For example untyped
lambda-calculus:

Expr = Expr — Expr
@ Or lambda-calculus with constants A:
Expr = AU (Expr — Expr)

@ Problematic, because this does not work for general sets!



Recursive equations

Recursive domain equations

General question:
@ If F is a function from domains to domains: Under what

conditions does the equation D = F(D) have a meaningful
solution?

Solution by categorification:
@ Let F: Dom — Dom be a functor. Find conditions under

which the equation D = F(D) has a least fixed point up to
isomorphism, and a way to compute it.

Definition (P-3.4.1): A fixed point for a functor F : Dom — Dom
is a pair (D, d) of a domain D € Dom and an isomorphism
d: F(D)— D.
A pre-fixed point is a pair (D, d) with an arrow d : F(D) — D.
@ Want to find an initial fixed point.



Fixed-point theorem

Generalized fixed-point theorem

@ Pre-fixed points and fixed points form categories: arrows:

O F(D)

dl ld'

D———D

@ We are looking for an initial object in the category of fixed
points.

@ Lemma (P-3.4.2): An initial pre-fixed point is also an initial
fixed point.



Fixed-point theorem

Generalized fixed-point theorem

@ The one-point domain L = {_L} is both initial and terminal
in Dom.

@ Theorem: Let p: L — F(L) be the unique arrow, and look
at the (infinite) diagram

F(p)

2
R F(L) F=(p)

F2(1) —% F3(1)

F has an initial pre-fixed point, which is the co-limit of this
diagram.

F(p)
—_—

@ This looks like

F(p)

2 3
1 P F(L) F=(p) F3(p)

F2(L1) — F3(1)

(this is called a projective limit)
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