Category Theory and Functional Programming

Day 3

21 October 2009

Constructions in categories

- Categories
- Initial and terminal objects
- Products and co-products
- Equalizers and co-equalizers
- Limits and co-limits
- Uniqueness up to isomorphism
- Pullbacks and pushouts
- Adjoints preserve (co-)limits

Categories

Categories

- Set of objects C_0
- Set of arrows C_1
- For each arrow $f \in C_1$, a domain $dom(f) \in C_0$ and a co-domain $cod(f) \in C_0$
- (Write $f: A \rightarrow B$ if dom(f) = A and cod(f) = B)
- For each object $A \in \mathcal{C}_0$, an identity arrow $\mathrm{id}_A \in \mathcal{C}_0$
- For each $f_1: A \rightarrow B$ and $f_2: B \rightarrow C$, a composite $f_2 \circ f_1: A \rightarrow C$,
- with associativity: $f_3 \circ (f_2 \circ f_1) = (f_3 \circ f_2) \circ f_1$ whenever these are defined,
- and identities: for all arrows $f: A \rightarrow B$, $f \circ id_A = f$ and $id_B \circ f = f$.
- That's all folks: $C_0, C_1, dom, cod : C_1 \rightarrow C_0, id : C_0 \rightarrow C_1, \circ : C_1 \times_{C_0} C_1 \rightarrow C_1$

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Initial and terminal objects

Definition: Let C be a category and $\bot, \top \in C$ objects.

- \bot is an initial object if there is exactly one arrow $\bot \to A$ for every $A \in C$.
- T is a terminal object if there is exactly one arrow A → T for every A ∈ C.

(Note the duality.)

Examples: **Set**, **Graph**, transition systems, poset-as-category, pointed sets

Arrows from terminal objects pick out elements.

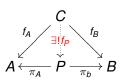
Example: in **Set**, an element of a set *A* is the same as an arrow $T \rightarrow A$.

Products and co-products

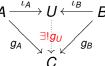
Definition: Let C be a category and $A, B \in C$ objects.

• A product of *A* and *B* consists of an object $P = A \times B$ of C and ("projection") arrows $\pi_A : P \to A$, $\pi_B : P \to B$ with the property that:

for any $C \in \mathcal{C}$ with arrows $f_A : C \to A$ and $f_B : C \to B$, there is exactly one arrow $f_P : C \to P$ for which $\pi_A \circ f_P = f_A$ and $\pi_B \circ f_P = f_B$



• Dually: A co-product of A and B consists of an object $U = A \sqcup B$ of C and ("injection") arrows $\iota_A : A \to U$, $\iota_B : B \to U$ with the property that



Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Products and co-products

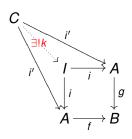
Examples:

- Products in Set, Graph, Mon
- Co-products in Set, Graph, Mon
- Co-products in Set_{*} = ⊤ ↓ Set
- Product in Graph vs. product in RGraph

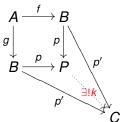
Equalizers and co-equalizers

Definition: Let C be a category and $f, g : A \rightarrow B \in C$ arrows.

An equalizer of f and g consists of an object $I \in \mathcal{C}$ and an arrow $i: I \to A$ for which



A co-equalizer of f and g consists of an object $P \in \mathcal{C}$ and an arrow $p : A \rightarrow P$ for which



$$I \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{p} P$$

Equalizers and co-equalizers

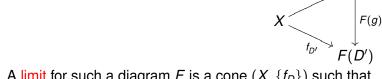
Example, in **Set**:

$$I \xrightarrow{i} A \xrightarrow{f} B \xrightarrow{p} P$$

- $I = \{x \in A \mid f(x) = g(x)\}$
- $i: I \hookrightarrow A$ inclusion
- $P = \text{set of equivalence classes } B/\sim$, where \sim is the smallest equivalence relation for which $f(x) \sim g(x)$ for all $x \in A$
- $p: x \to [x]_{\sim}$ projection

Limits

- A (commutative) diagram in a category C is a functor $F: \mathcal{D} \to C$ from a (usually quite small) category \mathcal{D} .
- A cone for such a diagram F consists of an object $X \in \mathcal{C}$ and arrows $f_D : X \to F(D)$ for all objects $D \in \mathcal{D}$ such that for all arrows $g : D \to D' \in \mathcal{D}$,



• A limit for such a diagram F is a cone $(X, \{f_D\})$ such that for all cones $(X', \{f'_D\})$,

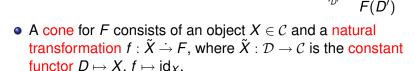
$$X' \xrightarrow{f'_D} F(D)$$

$$f'_D \xrightarrow{f_D} F(g)$$

$$f'_{D'} \xrightarrow{f'_{D'}} F(D')$$

Limits

- A (commutative) diagram in a category C is a functor
 F: D → C from a (usually quite small) category D.
- A cone for such a diagram F consists of an object $X \in \mathcal{C}$ and arrows $f_D : X \to F(D)$ for all objects $D \in \mathcal{D}$ such that for all arrows $g : D \to D' \in \mathcal{D}$,

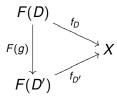


F(g)

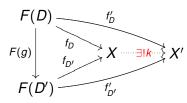
- These form a category of cones over *F*.
- A limit for F is a terminal object in this category.

Co-limits

• A co-cone for a diagram $F: \mathcal{D} \to \mathcal{C}$ consists of an object $X \in \mathcal{C}$ and a natural transformation $f: F \xrightarrow{\cdot} \tilde{X}$, where $\tilde{X}: \mathcal{D} \to \mathcal{C}$ is the constant functor $D \mapsto X$, $f \mapsto \mathrm{id}_X$:



 A co-limit is a terminal object in the category of co-cones over F:



Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Examples

- terminal object = limit of the empty diagram
- initial object = co-limit of the empty diagram
- product $A \times B = \text{limit of the diagram } A \quad B \text{ (no arrows)}$
- co-product A
 □ B = co-limit of the diagram A B (no arrows)
- equalizer of $f, g: A \to B = \text{limit of the diagram } A \xrightarrow{f \atop g} B$
- co-equalizer of $f, g : A \rightarrow B = \text{co-limit of the diagram}$ $A \xrightarrow{f \atop g} B$

Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

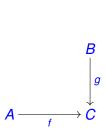
Uniqueness up to isomorphism

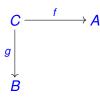
Terminal and initial objects are unique up to isomorphism

All limits and co-limits are unique up to isomorphism

Pullbacks and pushouts

A pullback is a limit of a diagram

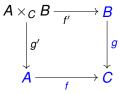


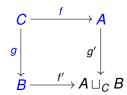


Categories Initial objects Products Equalizers Limits Uniqueness Pullbacks Adjoints

Pullbacks and pushouts

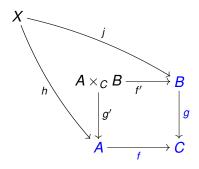
A pullback is a limit of a diagram

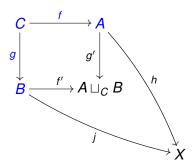




Pullbacks and pushouts

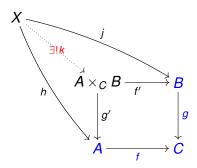
A pullback is a limit of a diagram

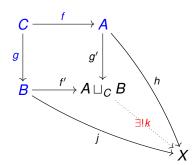




Pullbacks and pushouts

A pullback is a limit of a diagram





Adjoints preserve limits

Theorem: If $G: \mathcal{E} \to \mathcal{C}$ has a left adjoint and $D: \mathcal{D} \to \mathcal{E}$ has a limit (X, f), then $G \circ D: \mathcal{D} \to \mathcal{C}$ has limit $(G(X), G \circ f)$.

"Right adjoints preserve limits"

Dual theorem: If $F: \mathcal{C} \to \mathcal{E}$ has a right adjoint and $D: \mathcal{D} \to \mathcal{C}$ has a co-limit (X, f), then $G \circ D: \mathcal{D} \to \mathcal{E}$ has co-limit $(G(X), G \circ f)$.

"Left adjoints preserve co-limits"

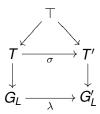
Categorical constructions for transition systems

- Transition systems
- Re-labeling
- Product
- 12 Restriction
- Parallel composition

Transition systems Re-labeling Product Restriction Composition

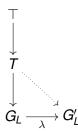
Transition systems

- Recall: Category of transition systems = pointed arrow category ⊤ ↓ RGraph → RGraph¹
- objects $\top \to T \to G_l$
 - terminal graph \rightarrow graph \rightarrow one-point graph
 - initial point \rightarrow graph \rightarrow labeling
- morphisms



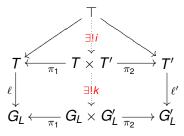
Re-labeling

Re-labeling of a transition system $\top \to T \to G_L$ by a label morphism $\lambda : L \to L'_{\perp}$:



Product

Product of transition systems $\top \to T \to G_L$, $\top \to T' \to G'_L$:



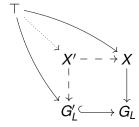
- Arrows $\top \xrightarrow{i} T \times T' \xrightarrow{k} G_L \times G'_L$ given uniquely because of product.
- The labeling is $G_L \times G'_L = G_{L \sqcup L' \sqcup L \times L'}$, or $L_{\perp} \times L'_{\perp} = \{(a,b),(a,\perp),(\perp,b),(\perp,\perp) \mid a \in L, b \in L'\}$
- This is the product in the category

 ⊤ ↓ RGraph → RGraph¹

Restriction

Restriction of a transition system $\top \to T \to G_L$ to a subset $L' \hookrightarrow L$:

Pullback



Parallel composition

For parallel composition $(\top \to T \to G_L) || (\top \to T' \to G'_L)$:

- $\bullet \quad \text{Form product } (\top \to T \to G_L) \times (\top \to T' \to G'_L)$
 - This is completely synchronized: contains all possible combinations $(a, b), (a, \bot), (\bot, b)$ of labels \Rightarrow all possible synchronizations
- **2** Restrict by an inclusion $S \hookrightarrow L_{\perp} \times L'_{\perp}$
 - Specifies which synchronizations are allowed
 - For CCS: $S = \{(a, \bar{a}), (b, \bar{b}), \dots\}$
 - For CSP: $S = \{(a, a), (b, b), \dots\}$
 - etc. (!)
- Re-label
 - For CCS: $(a, \bar{a}) \mapsto \tau, (b, \bar{b}) \mapsto \tau, \dots$
 - For CSP: $(a, a) \mapsto a, (b, b) \mapsto b, \dots$
 - etc.

Transition systems Re-labeling Product Restriction Composition

Parallel composition

- Theorem: All types of parallel composition can be expressed using product, restriction, and re-labeling.
- Product: limit. Restriction: pullback limit. Re-labeling: composition
- → All types of parallel composition are combinations of limits and composition.
- All types of parallel composition are preserved by right adjoints.
 - Recall: Unfolding from transition systems to synchronization trees is a right adjoint
 - Corollary: If || is any type of parallel composition, then the unfolding of a || is the || of the unfoldings.

Solutions to recursive domain equations

Domains; fixed-point theorem
Recursive domain equations
Generalized fixed-point theorem

Domains; fixed-point theorem

Recall:

- A domain is a set D together with a partial order
 □ D × D
 - which contains a least element $\bot \in D$, and
 - in which every increasing chain $x_1 \sqsubseteq x_2 \sqsubseteq \cdots$ has a least upper bound (lub).
- A function $f: D \rightarrow D'$ of domains is continuous if
 - f is monotone: $x \sqsubseteq_D y \Rightarrow f(x) \sqsubseteq_{D'} f(y)$, and
 - f preserves lub's: for any increasing chain $S \subseteq D$, f(lub S) = lub f(S).
- Domains and continuous functions form a category Dom.
- A fixed point of an endofunction $f: D \to D$ is an element $x \in D$ for which f(x) = x.
- Fixed-point theorem: A continuous endofunction $f: D \to D$ has a least fixed point x^* , and $x^* = \text{lub}\{f^i(\bot) \mid i \in \mathbb{N}\}.$

Recursive domain equations

Recall:

In operational semantics, we need recursively defined sets.
 For example

$$\mathsf{Env}_P = \mathsf{Pnavne} \rightharpoonup \mathsf{Kom} \times \mathsf{Env}_P$$

- This is quite common. For example untyped lambda-calculus:

$$Expr = Expr \rightarrow Expr$$

Or lambda-calculus with constants A:

$$Expr = A \cup (Expr \rightarrow Expr)$$

• Problematic, because this does not work for general sets!

Recursive domain equations

General question:

• If F is a function from domains to domains: Under what conditions does the equation D = F(D) have a meaningful solution?

Solution by categorification:

 Let F: Dom → Dom be a functor. Find conditions under which the equation D = F(D) has a least fixed point up to isomorphism, and a way to compute it.

Definition (P-3.4.1): A fixed point for a functor $F : \mathbf{Dom} \to \mathbf{Dom}$ is a pair (D, d) of a domain $D \in \mathbf{Dom}$ and an isomorphism $d : F(D) \to D$.

A pre-fixed point is a pair (D, d) with an arrow $d : F(D) \rightarrow D$.

Want to find an initial fixed point.

Generalized fixed-point theorem

Pre-fixed points and fixed points form categories: arrows:

$$F(D) \xrightarrow{F(f)} F(D')$$

$$\downarrow d \qquad \qquad \downarrow d'$$

$$D \xrightarrow{f} D'$$

- We are looking for an initial object in the category of fixed points.
- Lemma (P-3.4.2): An initial pre-fixed point is also an initial fixed point.

Generalized fixed-point theorem

- The one-point domain $\bot = \{\bot\}$ is both initial and terminal in **Dom**.
- Theorem: Let $p: \bot \to F(\bot)$ be the unique arrow, and look at the (infinite) diagram

$$\perp \xrightarrow{\rho} F(\perp) \xrightarrow{F(\rho)} F^2(\perp) \xrightarrow{F^2(\rho)} F^3(\perp) \xrightarrow{F^3(\rho)} \cdots$$

F has an initial pre-fixed point, which is the co-limit of this diagram.

This looks like

$$\perp \xrightarrow{p} F(\perp) \xrightarrow{F(p)} F^{2}(\perp) \xrightarrow{F^{2}(p)} F^{3}(\perp) \xrightarrow{F^{3}(p)} \cdots$$

(this is called a projective limit)