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Abstract7

Higher-dimensional automata (HDAs) extend classical automata by explicitly modeling8

concurrency through n-dimensional cells, each representing n parallel events. Thanks to the9

cubical structure of HDAs, these cells implicitly determine their lower-dimensional faces via10

face maps, capturing all their interconnections.11

In recent years, interest in HDAs has grown significantly, in particular as they generalize12

most concurrent formalisms. In a recent contribution, we proposed translations from Petri13

nets, including common features like weights, inhibitor arcs and even self-modifying nets to14

HDAs, along with a working implementation. However the representation and data struc-15

tures retained in this work are directly drawn from the mathematical description of HDAs16

and do not take advantage of the HDA’s structure.17

In this paper, we take initial steps toward leveraging this implicit structure. We propose18

what we call the max-cell representation of an HDA: instead of storing all cells, we retain19

only those that are not induced by higher-dimensional ones. This can lead to an exponential20

reduction in the number of stored cells and face maps while preserving all the information21

needed to reconstruct the full HDA. To demonstrate its effectiveness, we present a new22

algorithm that directly translates Petri nets into max-cell HDAs.23

1 Introduction24

Petri nets and HDAs are two operational model that aim at expressing concurrency between25

events. In both formalisms, events may occur simultaneously. Besides, both make a distinction26

between parallel composition a∥b and choice a·b+b·a. However, Petri nets are often considered27

through their interleaving semantics, thus reducing their expressive power and therefore effec-28

tively reducing a ∥ b to a ·b+b ·a. As an example, Figure 1 shows two Petri nets and their HDA29

semantics: on the left, transitions a and b are mutually exclusive (as ensured by the token in p5)30

and may be executed in any order but not concurrently; on the right, there is true concurrency31

between a and b, signified by the filled-in square of the HDA semantics. In interleaving semantics,32

no distinction is made between the two nets and both give rise to the transition system on the left.33

To tackle this issue, [12] introduced concurrent step-semantics. In this semantics, a limited34

form of parallelism is introduced: two parallel events must start simultaneously and end simulta-35

neously. While the expressivity is strictly greater than when only considering interleavings, it is36

shown that some possible behaviours were missed [5]. We illustrate this in Figure 2. In the Petri37

net, a and b can be fired concurrently. Besides, firing b enables a second firing of b. The behaviour38

of concurrent step-semantics is given by the graph on the right. However, it misses the possibility39

that the second a starts while the first a is running, as represented by the additional trajectory.40
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Figure 1: Petri nets and HDAs for interleaving (left) and true concurrency (right).
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Figure 2: Concurrent step-semantics miss some possible behaviours

Van Glabbeek [16] first explored the relations between Petri nets and HDAs, where an HDA41

is defined as a labeled precubical set whose cells are hypercubes of different dimensions. More42

recently, [9] introduces an event-based setting for HDAs, defining their cells as totally ordered43

sets of labeled events. This framework has led to a number of new developments in the field of lan-44

guages and logics for HDAs: a Kleene theorem [10] which relates HDAs and regular expressions;45

a Myhill-Nerode theorem [11] which constructs HDAs out of a prefix equivalence on regular lan-46

guages; a proof of decidability of language inclusion [6], a notion of monadic second-order logic for47

HDAs and a corresponding Büchi-Elgot-Trakhtenbrot theorem, [2, 4], a notion of temporal logic48

for HDAs and corresponding Kamp’s theorem [7] based on [3] relating HDAs to a subclass of stan-49

dard automata, and an extension of HDAs and timed automata called HDTAs was explored in [1].50

Concretely, HDAs are composed of cells, each associated with a list (called conclist) of events51

that are active in them. A 0-dimensional cell corresponds to a states with no active event, a 1-52

dimensional cell represents a transition (as in standard automata) with exactly one active event,53

and an n-dimensional cell captures concurrent behaviours involving n active events. These cells54

are interconnected through face maps. As an example, the HDA on the right in Figure 1 includes55

one two-dimensional cell, that we denote x, in which a and b (hence [ab]) are active. It also contains56

two 1-dimensional cells where a is active, twowhere b is active and four 0-dimensional cells. Lower-57

dimensional cells (or faces) are connected to higher-dimensional ones via lower and upper face58

maps, which specify when individual events start or terminate. For instance, the lower face δ0b (x)59

of x corresponds to the lower a transition where b is not yet started, while the upper face δ1b (x)60

represents the upper a-transition in which b is terminated. Similarly, δ0a(x) is the left b-transition61

and δ1a(x) is the right b-transition. The composition δ0aδ
0
b (x)= δ0b δ

0
a(x) identifies the bottom left62

0-dimensional cell and δ1aδ
1
b (x)=δ1b δ

1
a(x) corresponds to the upper right 0-dimensional cell.63

In [5], VanGlabbeek’s translation fromPetri nets to HDAs [16] was adapted to the event-based64

setting and extended to cover additional Petri net semantics, such as nets with inhibitor arcs.65

The paper also provided an implementation of these translations. However, this implementation66

was carried out in a naive manner. For the first version of the pn2HDA tool, we followed the mathe-67

matical definitions as closely as possible. This means to explicitly define each cell of the HDA and68

all of the face maps between them, leading to an explosion of the memory required to store the69

HDA. Indeed, an n-dimensional cell (roughly corresponding to a hypercube of dimension n) has70
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in total 3n cell of dimension at most n. More generally, this base version performs poorly—even71

in comparison to standard explicit Petri net tools. As shown in [5], the standard reachability72

graph of a Petri net corresponds to the restriction of the resulting HDA to its 0-dimensional73

cells. This means that this base version is systematically at a disadvantage, both in terms of time74

and memory usage. Moreover, each cell in the HDA must store more information, not only the75

marking, but also the multiset of events that are active within it. In contrast, classical tools only76

store markings for places and source/target data for steps.77

Figure 3: Comparison number of cells vs max-
cells, examples taken from mcc.

In this work, we extend the initial imple-78

mentation by addressing its naive aspects. We79

adapt the translation algorithm from Petri80

nets to HDA to retain, on the fly, only the81

strictly necessary cells: those of maximal di-82

mension, which in turn allow us to deduce83

all the implied lower-dimensional cells. For84

instance, storing a single 2-dimensional cell85

where a and b are active is sufficient to recon-86

struct the entire HDA depicted on the right87

in Figure 1. For each pair of maximal cells, we88

also storemultisets of events that enable reach-89

ing a shared face, so that the full structure can90

be reconstructed. Indeed, each maximal cell91

induces an HDA on its own, and the multisets92

associated with shared faces allow to identify93

common cells between these local HDAs and94

reassemble the complete one. Figure 3 high-95

lights the number of cells saved by our approach, compared to the naive construction.96

This article is organised as follows. We begin in Sect. 2 and 3 by recalling HDAs and Petri nets,97

focusing on their concurrent semantics which allows several transitions to fire concurrently. The98

following sections present our proper contributions. We give a brief overview of the translation99

from [5] in Sect. 4, followed by the improvements we brought. These are summarized in Sect. 5,100

with an updated algorithm alongside examples. Finally, we evaluate this algorithm in Sect. 6 to101

illustrate the (often exponential) reduction in the size of the representation.102

2 Higher-Dimensional Automata103

Higher-Dimensional Automata (HDA) form a class of models which extend finite automata. They104

provide extra structure that allows one to specify independence or concurrency of events. They105

are constituted of cells connected by face maps. Each cell contains a (ordered) list of events106

representing the active events, and face maps terminate (upper maps) or “unstart” (lower maps)107

some events.108

More formally, let Σ be an alphabet. A concurrency list (conclist) is a tuple (U,99K,λ) with109

U a finite set of events, 99K⊂U×U a total order called the event order, and a labelling function110

λ : U → Σ. They represent labelled events running in parallel. For the sake of briefness, when111

no ambiguity arises, a conclist will be denoted by its underlying set, i.e., denoting U instead of112

(U,99K,λ) (and similarly for other structures defined along this paper). We denote by □(Σ) (or113

□ when the context is clear) the set of conclists over Σ.114

A precubical set
(
X,ev,{δA,B;U | U ∈ □,A,B ⊆ U,A ∩B = ∅}

)
consists of a set of cells X115

together with a function ev :X→□. For a conclist U we write X[U ] = {x ∈X | ev(x) = U} for116

the cells of type U . Further, for every U ∈□ and A,B ⊆U with A∩B = ∅ there are face maps117
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δA,B;U :X[U ]→X[U \(A∪B)] which satisfy the precubical identity118

δC,D;U\(A∪B)δA,B;U =δA∪C,B∪D;U (1)

for every U ∈□, A,B⊆U , and C,D⊆U \(A∪B).119

We will often omit the extra subscript “U” in the face maps and often write δ0A for δA,∅120

and δ1B for δ∅,B . The upper face maps δ1B transform a cell x into one in which the events in121

B have terminated; the lower face maps δ0A transform x into a cell where the events in A have122

not yet started. These cells are sometimes called subcells of x. Every face map δA,B can be123

written as a composition δA,B=δ0Aδ
1
B=δ1Bδ

0
A, and the precubical identity (1) expresses that these124

transformations commute.125

As mentioned above, we associate to each cell of a precubical set a set events totally ordered126

by the event order: a conclist, instead of a multiset. Conclists are hence lists or words of Σ∗,127

but we often write them vertically to emphasize that the elements are running in parallel. This128

ordering is crucial in the presence of autoconcurrency, where multiple events may share the same129

label, as it allows us to determine which events are unstarted or terminated by the face maps.130

Formally, event order is needed to ensure uniqueness of conclist isomorphisms [9]: two conclists131

(U1,99K1,λ1) and (U2,99K2,λ2) are isomorphic if there exists a bijective mapping φ such that132

a 99K1 b iff φ(a) 99K1 φ(b) and λ2 ◦φ = λ1. Nevertheless, this technical detail is not central to133

the present work: since the event order has no computational significance, we often omit it and134

assume that it goes downwards.135

We write Xn={x∈X | |ev(x)|=n} for n∈N and call elements of Xn n-cells. The dimension136

of x∈X is dim(x)= |ev(x)|∈N; the dimension of X is dim(X)=sup{dim(x) |x∈X}∈N∪{∞}.137

For k∈N, the k-truncation of X is the precubical set X≤k={x∈X |dim(x)≤k} with all cells of138

dimension higher than k removed.139

A higher-dimensional automaton (HDA) A = (Σ,X,⊥) consists of a finite alphabet Σ, a140

precubical set X on Σ, and a subset ⊥⊆X of initial cells. (We will not need accepting cells in141

this work.) An HDA may be finite or infinite, or even infinite-dimensional.142

Computations of HDAs are paths, i.e., sequences143

α=(x0,φ1,x1,...,xn−1,φn,xn) (2)

consisting of cells xi of X and symbols φi which indicate which type of step is taken: for every144

i∈{1,...,n}, (xi−1,φi,xi) is either145

• (δ0A(xi),↗A,xi) for A⊆ev(xi) (an upstep)146

• or (xi−1,↘A,δ
1
A(xi−1)) for A⊆ev(xi−1) (a downstep).147

Intuitively, a downstep terminates events in a cell, following an upper face map. This is why148

downsteps require thatA⊆ev(xi−1), i.e., events that are terminated belong to the cell. Similarly,149

an upstep starts events by following inverses of lower face maps. The constraints on upsteps150

require that A⊆ev(xi), i.e., the initiated events belong to the next cell after the step. Both types151

of steps may be empty.152

A cell x ∈ X is reachable if there exists a path α from an initial cell to x, i.e., x0 ∈ ⊥ and153

xn = x in the notation (2) above. The essential part of X is the subset ess(X)⊆X containing154

only reachable cells. Note that, in general ess(X) is not necessarily an HDA, in particular when155

⊥∩X0 = ∅, in which case some 0-cells will be missing. However, this situation does not arise in156

our setting: we only consider HDAs X generated from Petri nets (see Section 4), whose initial157

cells are always of dimension 0 and for which ess(X) is an HDA. (This is a general principle: for158

any HDA X with ⊥X⊆X0, ess(X) is also an HDA [11].)159

Example 2.1. Figure 4 shows a two-dimensional HDA as a combinatorial object (left) and160

in a geometric realisation (right). It consists of nine cells: the corner cells X0 = {x,y, v,w}161
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Figure 4: A two-dimensional HDA X on Σ={a,b}, see Example 2.1.

(depicted in blue) in which no event is active (for all z ∈ X0, ev(z) = ∅), the transition cells162

X1={g,h,f,e} (shown in red and green) in which precisely one event is active (ev(f)= ev(e)=a163

and ev(g) = ev(h) = b), and the (gray) square cell q where ev(q) = [ab], i.e. a and b are executed164

concurrently.165

The arrows between the cells on the left representation correspond to the face maps connecting166

them. For example, the upper face map δ1ab maps q to y because the latter is the cell in which the167

active events a and b of q have been terminated. On the right, face maps are used to glue cells168

together, so that for example δ1ab(q) is glued to the top right of q. In this and other geometric169

realisations, when we have two concurrent events a and b with a99Kb, we will draw a horizontally170

and b vertically.171

All the cells of the HDAX of Figure 4 are reachable from the initial cells {v,g}. For example h172

is reachable by v↗ab q↘a h, v↗a e↗b q↘a h or v↗b g↗a q↘a h. Consequently, h is also173

reachable from g, and the transition h↘b y may then be added to reach y.174

3 Petri nets175

A Petri net N=(S,T,F ) consists of a set of places S, a set of transitions T , with S∩T =∅, and a176

weighted flow relation F :S×T∪T×S→N.177

A marking of N is a function m : S → N, associating each place to the number of tokens178

present. A Petri net N = (S,T,F ) together with an initial marking i : S→N is called a marked179

Petri net. A marked Petri net is k-bounded if m(s)≤k for every place s. It is bounded if there is180

a value k∈N such that m is k-bounded.181

Let E be any set. A function f :E→N is a multiset, i.e., an extension of sets allowing several182

instances of each element of E.183

We introduce some notation for these. We write x∈ f if f(x)≥1. Given two multisets f1,f2184

over E we will write f1≤f2 iff f1(x)≤f2(x) for every element x∈X. If f(x)∈{0,1} for all x, then185

f may be seen as a set, and the notation x∈ f agrees with the usual one for sets. The multisets186

we use will generally be finite in the sense that
∑

x∈Ef(x)<∞, and in that case we might use187

additive notation and write f =
∑

x∈Ef(x)x. This notation easily applies to markings of Petri188

nets, and we will write for instancem=2p1+p4 for a marking such thatm(p1)=2,m(p4)=1, and189

m(pi)=0 for any other place pi∈S\{p1,p4}.190

For a transition t∈T , the preset of t is the multiset •t :S→N given by •t(s)=F (s,t). This191

preset describes how many tokens are consumed in each place when t fires. The postset of t is192

the multiset t• : S → N such that t•(s) = F (t,s). It describes how many tokens are produced193

in each place of the net when firing t. For the sake of simplicity, all examples in this paper194

deal with Petri nets where F ⊆ (S×T )∪ (T ×S), that is, for every place s and transition t, we195
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Figure 5: A Petri net N (left); the reachability graph JNK1 (middle); and its concurrent step
reachability graph JNKCS(right).

have •t(s),t•(s)∈ {0,1}. However, the algorithms described here and their implementation are196

designed to handle the general case.197

Petri nets compute by transforming markings. Their standard semantics is an interleaved198

semantics, where states are markings and a single transition can fire at each step. Let m :S→N199

be a marking and t ∈ T , then t can fire in m if •t ≤ m. Firing t produces a new marking200

m′=m−•t+t•.201

The reachability graph (see for example [8]) of Petri net N = (S,T,F ) is the labeled graph202

JNK1=(V,E) given by V =NS and203

E={(m,t,m′)∈V ×T×V |•t≤m,m′=m−•t+t•}.
(The reason for the subscript 1 in JNK1 will become clear later.)204

In a reachability graph vertices aremarkings and edges are labeled by the transitionwhich fires.205

A computation of a Petri net is a path in its reachability graph. Note that we use collective token206

semantics, i.e., tokens in •t that are consumed by firing t are considered as blind resources. Petri207

nets also have an individual token semantics [13] where transitions distinguish tokens individually208

by considering their origin. This may be used to model realisation of independent processes; but209

we will not consider it here.210

Let N1,N2 be two Petri nets. The reachability graphs JN1K1 =(V1,E1) and JN2K1 =(V2,E2)211

are isomorphic, denoted JN1K1∼= JN2K1, if there exist bijections f :V1→V2 and g :E1→E2 such212

that for all e1=(m1,t1,m
′
1)∈E1, g(e1)=(m2,t2,m

′
2) iff f(m1)=m2 and f(m′

1)=m′
2.213

Considering Petri nets via their interleaved semantics misses an important point of the model,214

namely concurrency. Indeed, it does not allow to distinguish between behaviours where a pair215

of transitions fire in sequence from behaviours where these transitions are independent and can216

fire concurrently. One way to cope with this issue is to consider executions of Petri nets as217

processes [13], that is, partial orders representing causal dependencies among transitions occur-218

rences. Another possibility is the use of a concurrent step semantics [12], where several transitions219

are allowed to fire concurrently. The concurrent step semantics mimics that of the interleaved220

semantics, but fires multisets of transitions.221

For a multiset U : T →N of transitions we write •U =
∑

t∈T
•tU(t) and U• =

∑
t∈T t

•U(t).222

U is firable in marking m if •U ≤ m. The concurrent step reachability graph [14] of Petri net223

N=(S,T,F ) is the labeled graph JNKCS=(V,E) given by V =NS and224

E={(m,U,m′)∈V ×NT×V |U ̸=∅,•U≤m,m′=m−•U+U•}. (3)

Figure 5 shows a simple example of aPetri net and its two types of reachability graph. Note that225

transitions in JNKCS allow multisets of transition rather than only sets, thus several occurrences226

of a transition may fire in a concurrent step. This feature is called autoconcurrency, and it is well227

known that allowing autoconcurrency increases the expressive power of Petri nets [15]. Further,228

JNKCS is closed under substeps in the sense that for all multisets V ≤U , if (m,U,m′′)∈E, then we229

also have (m,V,m′)∈E and (m′,U \V,m′′)∈E for some marking m′.230

Notice that our definition of Petri nets allows preset-free transitions t with •t= ∅. When a231
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X[∅]={p1+p3,p2+p3,p1+p4,p2+p4}
X[a]={(p3,a),(p4,a)}
X[b]={(p1,b),(p2,b)}
X[[ab]]={(0,[ab])}
X[[ba]]={(0,[ba])} p1+p3 p2+p3

p1+p4 p2+p4

(p3,a)

(p4,a)

(p1,b) (p2,b)(0,[ab])

Figure 6: Higher-dimensional automaton (reachable part only) for the Petri net of Figure 5. Left:
sets of cells; right: geometric realisation (not showing X[[ba]]).

transition t has an empty preset, then t is firable from any marking. In an interleaved semantics,232

allowing preset-free transitions does not change expressive power, so one frequently assumes that233

•t ̸=∅ for every t∈T . In the setting of a concurrent semantics with autoconcurrency, an arbitrary234

number of occurrences of each preset-free transitions may fire from any marking. Because of this,235

every vertex in JNKCS would be of infinite degree. We will generally allow preset-free transitions236

in what follows, however as the resulting reachable markings is infinite, the algorithms we describe237

will not terminate. Notice that postset-free transitions (i.e., transitions t with t• = ∅) are not238

problematic. They do not cause the reachability graph to become infinite.239

4 From Petri nets to HDAs, revisited240

A construction from a Petri net N to higher-dimensional automaton JNK was first explored in241

[16, Definition 9]. This construction was adapted in [5] to the event-based setting of HDAs242

introduced in [9] where the labels of the events in JNK are the transitions of N .243

Let N = (S,T,F ) be a Petri net. Let □=□(T ) and define X =NS×□ and ev :X→□ by244

ev(m,τ)=τ . For x=(m,τ)∈X[τ ] with τ=(t1,...,tn) non-empty and i∈{1,...,n}, define245

δ0ti(x)=(m+•ti,(t1,...,ti−1,ti+1,...,tn)),

δ1ti(x)=(m+t•i ,(t1,...,ti−1,ti+1,...,tn)).

Eq. (1) could be used to generate the face maps terminating or unstarting multisets of events,246

in order to define a precubical set JNK=X. From a practical point of view this is however not247

necessary. In [5] and this work we are concerned with state-space exploration and reachability248

properties. In this context, there is no difference between using a facemapwith amultiset of events249

and its decomposition into a series of “elementary” face maps using a single event. Hence, a path250

in JNK is a computation in N in which steps start or terminate single events and concurrency of251

events, i.e. transition that fire concurrently in the net, can be retrieved by looking at the conclist252

of the cell in which the computation currently finds itself.253

Note that the 0-cells of JNK correspond to the markings of N and in an n-cell of JNK, n254

transitions of N are running concurrently. It was shown in [5] that JNK is closely related to both255

the reachability graph and the concurrent step reachability graph of N . Specifically, the graph256

whose vertices are the 0-cells of JNK andwhose edges are triples of the form (δ0t (x),x=(m,t),δ1t (x))257

is isomorphic to the reachability graph ofN (see [5, Lemma 4]). Furthermore, consider the graph258

with the same vertex set (the 0-cells of JNK), and edge set259

E={(x,U,z) |∃y∈X : δ0ev(y)(y)=x, δ1ev(y)(y)=z, pi(ev(y))=U},
where, for a sequence a=(a1,...,an)∈□(Σ) over some alphabet Σ, the Parikh image pi(a) :Σ→N260

is defined by counting symbol occurrences pi(a)(x) = |{i | ai = x}|. This graph is isomorphic to261

the concurrent step reachability graph of N (see [5, Lemma 5]).262
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Note that for the initial marking i of the marked net, we have i ∈ JNK[∅], the construction263

above induces an HDA JNK=(T,X,⊥) with its initial cell set to ⊥= {i}. In addition, as firable264

transitions only depend on the currentmarking, and as the effect of a firing is deterministic, when a265

marked net is bounded, the reachable part of JNK1 is finite. However, due to autoconcurrency, this266

property does not hold for the full JNK, as shown in [5, Example 6]. Nevertheless, when marked267

Petri net N is bounded and has no preset-free transitions, then JNK is finite [5, Proposition 7].268

The above definition of the HDA JNK is highly symmetric: for a given cell defined by its269

marking m and its conclist τ , c = (m,τ), there exists another cell c = (m,τ ′) with τ ′ being a270

permutation of τ . However, in fine we are only interested in the multiset of concurrently active271

transitions. In order to avoid the factorial blow-up in the number of cells, we fix an arbitrary272

(non-strict) total order ≼ on the transitions in T and then instead of □(T )∼=T ∗ consider the set273

T ∗
≼={(t1,...,tn) |∀i=1,...,n−1: ti≼ ti+1}274

The definition of the face maps of this reduced X=JNK stays the same, and X is now a (non-275

symmetric) precubical set with one cell for every marking m and every multiset of transitions τ .276

Figure 6 shows the HDA JNK for the Petri net N of Figure 5 with initial marking i=p1+p3.277

While this transformation is effective, it is not efficient. By keeping in memory all cells, we278

waste computational resources and do not take advantage of the HDA’s structure. One can279

notice that by knowing a cell, one can deduce its subcells. As 0-cells are uniquely defined by the280

corresponding marking in the Petri net, we can reconstruct the HDA knowing only the cells of281

highest dimensions and how to reach their shared faces. This is formalized in the following.282

Let us first define for an HDA X and two cells x,y∈X the set of faces that x and y share283

shX(x,y)={z∈X |∃Ax,Bx,Ay,By : z=δAx,Bx,ev(x)(x)=δAy,By,ev(y)(y)}284

Definition 1 (Max-Cell HDA representation (MHDA)). The max-cell HDA representation of285

an HDA A defined by its set of cells X and its face maps δ0 and δ1 is the pair Amax=(Xmax,δmax)286

where:287

• Xmax={x∈X |∄y∈X,a∈Σ: x= δ0a(y) or x= δ1a(y)}: the cells of X that are neither lower288

nor upper face maps of any cell in X289

• For each x,y∈Xmax, if290

– there exists z∈shX(x,y) such that z=δAx,Bx,ev(x)(x)=δAy,By,ev(y)(y)291

– and there is no w∈shX(x,y), a∈Σ such that z=δ0a(w) or z=δ1a(w)292

then ((Ax,Bx),(Ay,By),(ev(x),ev(y)))∈δmax, for some Ax,Ay,Bx,By∈□. This is the set of293

multisets one must unstart and terminate in respectively ev(x) and ev(y) to reach from both294

x,y∈Xmax a shared face which is maximal in shX(x,y). We write δ(Ax,Bx),(Ay,By),(ev(x),ev(y))295

when (Ax,Bx),(Ay,By),(ev(x),ev(y))∈δmax.296

This reduced representation retains all the necessary information. Indeed, each maximal cell297

x∈Xmax of dimension n determines an n-dimensional HDA: it contains a single n-cell, namely298

x, and all lower-dimensional faces can be uniquely reconstructed from it using the precubical299

structure. The relation δmax then serves to identify the shared cells between these HDAs: knowing300

how to reach a maximal shared face from two maximal cells x and y is sufficient to deduce the301

other shared faces and the ways to reach them from x and y (see Example 5.1). In the next section,302

we present an algorithm that constructs an MHDA from a Petri net, such that the corresponding303

HDA is the same as the one obtained via the translation from [5].304
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p0 p1

p2 p3

p4

a b
x

c

m0 m1

m2 m3 m4

a

b

c

x

N0

N1

a+

N9

b+

N11

x+

x-

N2

b+

N8

a-

N3

a-

N7

b-

N4

b-

N5

c+

N6

c-

a-

b+

a+

N10

b-

a+

  -

N0: [1,1,0,0,0]x[] N6: [0,0,0,0,1]x[]
N1: [0,1,0,0,0]x[a] N7: [0,0,0,1,0]x[a]
N2: [0,0,0,0,0]x[a,b] N8: [0,1,1,0,0]x[]
N3: [0,0,1,0,0]x[b] N9: [1,0,0,0,0]x[b]
N4: [0,0,1,1,0]x[] N10: [1,0,0,1,0]x[]
N5: [0,0,0,0,0]x[c] N11: [0,0,0,0,0]x[x]

N2

N5

[()(a,b);();(c)()] N11

[(a,b)();();(x)()] [()(a,b);();()(x)]

[()(x);();(c)()]

N1 N2

N3

N1: [1,1,0,0,0]x[x]
N2: [1,1,0,0,0]x[a,b]
N3: [0,0,1,1,0]x[c]

Figure 7: APetri net, its correspondingHDA (geometrical on the bottom left and state view on the
middle), with its MHDA. Top obtained from reducing an HDA, bottom from direct translation.
Note that here both, N1 and N2 are intial cells.

5 Algorithm305

5.1 Reduction from HDAs to MHDAs306

As a first step, we implemented a translation from HDAs to MHDAs, and therefore, by using307

the translation from Petri nets to HDAs introduced in [5] also from Petri nets to MHDAs. The308

most expensive part of this translation is finding the maximal shared faces between max-cells,309

as this necessitates checking for each pair of max-cells if they have a common face. Once such310

a face is found we also need to determine its maximality, involving the inclusion check of con-311

clists of the face itself, but also of the multisets allowing to attain it. That is a face map entry312

δ(A′
x,B

′
x),(A

′
y,B

′
y),(ev(x),ev(y))

is considered larger than a face map entry δ(Ax,Bx),(Ay,By),(ev(x),ev(y))313

if and only if the following conditions hold:314

(I) ev(x)\(Ax∪Bx)⊆ev(x)\(A′
x∪B′

x) (II) A′
x⊆Ax∧B′

x⊆Bx (III) A′
y⊆Ay∧B′

y⊆By

The first condition ensures the maximality of the shared face itself, the second and third315

conditions ensure that both face maps use “comparable” events. This is particularly important316

when parallel transitions are present: set of transitions sharing the same pre- and postset.317

Example 5.1 (Comparison of the standard andmax-cell representation of anHDA). In Figure 7,318

a Petri net is depicted on the upper left alongside its resulting HDA, with the geometrical view319

bottom left and its representation as starter-terminator automaton in the middle: each transition320

9



Amrane, Bazille, Fragnaud, Schlehuber-Caissier

corresponds to the start (such as a+) or the end (such as b−) of an event. The MHDA is repre-321

sented on the bottom right. Note that the transition x is parallel to [ab]. Therefore, firing x or the322

set {a,b} in a concurrent step has the same effect on the marking.323

The fact that [ab] is parallel to x, i.e., causes the same marking change, becomes clear when look-324

ing at the paths fromN0 toN4. On the MHDA, there are only three max-cells, with the conclists [ab]325

(N2), x (N11) and c (N5). Here transition need to be read as (Ax,Bx);(ev(x)\Ax∪Bx);(Ax,Bx),326

that is we list the events that need to unstarted / terminated from the source and target cell to get327

to the shared face with the given conclist. It can be clearly seen that the 2-cell N2 shares the all328

“all events unstarted” and “all events terminated” 0-cells with N11 corresponding to them being329

parallel. The first transitions unstarts all events, the second transitions terminates them. Note330

that in this example, we reduced the number of cells from 12 to 3, but even more importantly, the331

number of distinct markings (which has a significant impact on memory consumption) drops from332

10 to 1.333

All of this causes the reduction algorithm to be fairly expensive exemplified in Table 1. At334

the same time, the table also highlights the possible gains using the MHDA representation: The335

number of cells, face map entries and even more so the number of distinct markings and conclists336

is significantly reduced. Table 1 illustrates the spatial gain of the new MHDA representation337

compared to the previous naive HDA representation. For both, we reported the number of cells,338

conclists, and markings saved in the final data structure on multiple examples. In the table, we339

also highlight the time cost of the new conversion algorithm compared to the previous one.340

HDA MHDA time (ms)
Name cells conclists markings cells conclists markings PN→HDA HDA→MHDA
abx 1 12 6 10 3 4 1 0.04 0.1
abx 2 69 20 46 6 18 1 0.2 7
abx 3 272 50 146 10 48 1 0.6 193
abx 4 846 105 371 15 103 1 2 4450
abx 5 2232 196 812 21 194 1 9 74.103

Sudoku-PT-A-N01 3 2 3 1 1 1 0.008 0.004
Sudoku-PT-A-N02 177 35 176 6 23 5 0.4 19

afcs 01 a 4727 941 1076 417 941 12 21 865.103

Table 1: Comparison of HDA and MHDA space complexity. The Sudoku and afcs instances are
taken from the mcc, abx n corresponds to our running example with n tokens in p0 and p1.

5.2 A first direct translation from Petri nets to MHDAs341

As shown above, the reduction from HDAs to MHDAs is expensive, in particular due to the large342

number of inclusion checks between conclists. To remedy this issue we present a direct translation343

from Petri Nets to MHDAs in this section.344

The basic idea is to iteratively construct the MHDA by exploring the reachable max-cells. We345

strive for a minimal memory footprint at the expense of runtime by never storing the reachable346

markings (corresponding to 0-cells) but only generating them on the fly when necessary.347

InAlgorithm 1 the definition of amax-cell is slightly different from the one used before. Instead348

of the marking of the cell itself, we add the preset of all currently executed transitions, as this349

allows to express certain operations more naturally and efficiently.350

We write (m,c)⊑ (m′,c′) to denote that a cell lc=(m,c) defined by its initial marking m and351

conclist c is a subcell of lc′=(m′,c′). This is expressed by splitting the conclist c′ into two parts352

u and v, such that353
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Algorithm 1 Petri net to MHDA

Require: Input: Petri net pn
Require: Output: Corresponding max HDA
mhda←empty mhda()
\* Stack of markings to visit
stack← [pn.init mark]
while stack do

nm←stack.pop()
\* Generate all maximal concurrent steps from the current marking
all MCS=gen max conc step(pn,nm)
for aMCS∈all MCS do \* Exploring them
\* Check if it is a subcell of or equal to a currently existing max cell
if ∃lc∈mhda.max cells() : (nm,aMCS)⊑(lc.m,lc.c) then

continue
\* We have found a new max cell
nc=mhda.add cell(nm,aMCS)
\* Check if the new cell subsumes existing ones
for sc∈mhda.max cells() : (sc.m,sc.c)⊑(nc.m,nc.c) do

mhda.delete cells(sc)

\* Iterate over all possible concurrent steps
for cs∈2aMCS do
\* Compute marking of the corner
co=nc.m+fire(cs)
stack.push(co)

• c′=u ∪ v with the conclists seen as multisets354

• m=m′−•u+u• reach the corner of lc from the corner of lc′355

• c⊆v the conclist of lc is subset by whatever is left in c′ after firing the events in u.356

These constraints are necessary and sufficient to ensure that the cell mc is a subcell of mc′.357

In order to avoid the explicit generation of subcells during inclusion checks, we reformulate the358

problem as an integer program.359

gen max conc step(pn,m) generates the list of all maximal concurrent steps that can be fired360

from the marking m. That is for any cs in the resulting list gen max conc step(pn,m) (again,361

each concurrent step is represented by a multiset) we have •cs≤m. It being maximal means that362

we can not add any transition to the multiset cs without violating the fireability constraint.363

5.3 An example of the conversion364

We illustrate Algorithm 1 with an example continuing Example 5.1 and represented in Figure 7.365

Intuitively, in this Petri net, there are mutually exclusive ways to enable transition c, either by366

firing (concurrently or sequentially) a and b, or by firing x. In the HDA, this is represented by the367

[ab] square and x 1-cell. Notice that these two only share the lower and upper faces N0 and N4.368

As the cells of a MHDA are represented by a couple (m,c), with m the marking of the 0-cell369

where all events are unstarted, and c itsmax-conclist, we represent the conclist labels on the 1-cells370

and the markings are named (fromm0 tom4 included) on the 0-cells of the HDA figure. By doing371

so, we can iterate over the conversion process with the same names. The stack is represented as372
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a bracketed list, with its first element being the latest inserted and first to be processed (even if373

the order does not matter to explore the whole structure).374

First, we start with an empty HDA, an empty stack and the initial marking m0 = p0+p1 as375

the current marking. In this case, we will create all max-conclists. This results in the conclists376

set {[x],[ab]}. By iterating over this set, we will first add the max 1-cell (m0,[x]), and the marking377

m3 = p2 + p3 is added to the stack. Then, the max 2-cell (m0,[
a
b]) is added to the HDA. Note378

that, depending on how the set is represented, it could have been explored first, but this does not379

change the result. With this new cell, the markingsm1=p1+p2,m2=p0+p3, andm3=p2+p3 of380

the 3 remaining corners of the 2-cell have to be added to the stack as well. Then, the markingm3381

is processed. This marking was generated by the two max-cells already created. However, after382

processing its max conclist (which is unique in this case), we obtain the conclist [c], which is not383

a sub-conclist of any of the max-cells already generated. Therefore, the cell (m3,[c]) is a new cell384

and is added to the HDA. The marking m4= p4 is also added to the stack. While all maximum385

cells have been created, the algorithm still has to empty the stack to ensure that the exploration386

is complete. By processing m4, we notice the max-conclist set is empty: there is no transition we387

can fire here. The marking is thus ignored. Then, the markings m2 and m1 have 1 max-conclist388

each ([a] and [b] respectively). However, for both cells c∈{(m1,[b]),(m2,[a])}, we have c⊑(m0,[
a
b]).389

So, both cells found in markings m1 and m2 are in reality sub-cells of an already existing max390

2-cell, and they are not added to the MHDA. Finally, the marking m3 is the starting point of391

the cell (m3,[c]) explored previously. Therefore, this marking was already explored and there392

is no interest in searching for its max-conclists. The stack is now empty and the conversion is393

successfully done. Note that currently, for direct MHDA construction, we only store a simplified394

version of the face maps, containing only the information about the source and destination cell.395

These transition form a spanning tree of the complete MHDA and this sufficient for reachability396

questions. If needed, the more detailed information about shared faces can be recovered.397

Computing State Space properties from MHDA Using our reduced representation for398

reachability problems is fairly straight forward, however computing properties of the state space,399

i.e., properties of the reachability graph of the Petri Net which is equivalent to the 1-truncation400

of the HDA, turns out to be fairly involved and we do not have a closed form solution yet.401

a

a

a

Figure 8: HDA recognizing
[
a
a
a

]

Some of the arising problems are illustrated in Figure 8. This402

HDA has a single 3-cell with conclist
[
a
a
a

]
. The standard calcu-403

lation tells us that there are 33=27 cells in the HDA. However404

this only holds when there is no autoconcurrency. Due to auto-405

concurrency, there are several cells that are identified with one406

another. That is they share the same marking and conclist, in407

the figure all identified cells share the same shape or line style.408

The actually geometric interpretation is therefore a cube “folded409

onto itself” on certain faces, edges and corners. In fact there is one 3-cell, 2 2-cells (the faces neigh-410

bouring the initial corner, and those neighbouring the diamond shaped top right corner), 3 1-cells411

identified by the line styles, and 3 0-cells identified via shape, for a total of 9 cells.412

This phenomena does not only occur when there is autoconcurrency, but also when the conclist413

contains sets of parallel transitions. Additionally, to correctly compute state space properties, we414

would have to take into account the face maps and their shared faces, making the problem rather415

complex.416
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HDA MHDA time (s)
Name cells conclists markings cells conclists markings PN→HDA PN→MHDA
abx 3 272 50 146 10 10 4 0.003 0.7
abx 4 846 105 371 15 15 5 0.005 4
abx 5 2232 196 812 21 21 6 0.008 13
abx 6 5214 336 1596 28 28 7 0.01 44

Sudoku-PT-A-N02 177 35 176 6 23 5 0.4 19

Table 2: Comparison for direct MHDA construction. Note that the number of conclists necessary
may be different here from the one reported in Table 1 as the face maps do not store detailed
information. abx n refers to our running example with n tokens in p0 and p1.

6 Evaluation417

Here we present the results of concerning the number cells, conclists and markings needed to418

represent the MHDA, as well as the execution time for a selected set of benchmarks. We give419

the execution time for completeness, but it needs to be handled with care: currently the overall420

runtime is dominated by the cost of inclusion checks. These are very solver and formulation421

dependant and can in our opinion be greatly improved with further development. To reproduce422

these results and for further insights please see https://gitlabev.imtbs-tsp.eu/philipp.schlehuber-423

caissier/pn2hda/-/tree/sub/msr25.424

7 Conclusion425

To address the combinatorial explosion of the translation from Petri nets to HDAs, we proposed a426

reduced representation and a refined algorithm that, given a Petri net, does not construct the full427

HDA explicitly. Instead, it computes only an MHDA representation: a set of so-called maximal428

cells along with relations between them. The resulting compact representation drastically reduces429

the number of cells, conclists and markings that need to be stored, and the full HDA can be430

reconstructed when needed.431

This work represents a first, yet promising, attempt at efficiently representingHDAs generated432

from Petri nets, while avoiding their full explicit construction. In practice, our construction tends433

to be slower than building the full HDA, but the memory savings make the approach beneficial434

overall. That said, both the algorithm and its implementation could be improved, especially to435

reduce runtime. This can be done by improving the exploration and computing the maximal436

concurrent steps from the faces of cells and not corners. This intertwines the generation of the437

maximal concurrent steps and their exploration reducing overall complexity.438

Finally, our reduced representation of HDAs could also be used in logic-to-HDA translations439

for model checking purposes. The appeal of HDAs lies in their ability to accept all possible440

interleavings of a given execution. This property naturally supports partial-order reduction441

techniques and can significantly enhance state-space exploration in system modeling. Several442

recent works [2, 4, 7, 18] have explored connections between modal, first-order, and second-order443

logics and HDAs and we seek to adapt them to work directly on MHDAs.444
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dimensional automata. Mathematical Structures in Computer Science, 31(5):575–613, 2021. https:473

//arxiv.org/abs/2103.07557.474

[10] Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. Kleene theorem for475
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A Improvements to the algorithm497

As reported in Table 2, the runtime of the new algorithm is significantly worse than the one of498

the original algorithm. This is partly due to the costly inclusion check, currently performed via a499

reduction to an integer program, which is then fed to z3 via its C++ API. However, z3 is capable500

of solving SMT problems, and using a more dedicated solver might improve performance. On the501

other hand, many optimizations concerning the exploration are possible. We present a first step502

in this direction in Algorithm 2. The idea is to check for existence of the marking before pushing503

it onto stack. That is, if there already exists a max-cell capable of producing this marking, it is504

either already on the stack or it has already been explored. This avoids the creation and inclusion505

checking of the, possibly many, maximal conclists that are fireable from the marking.506

Algorithm 2 Improved Petri Net to MHDA

Require: Input: Petri net pn
Require: Output: Corresponding max HDA
mhda←empty mhda()
\* Stack of markings to visit
stack← [pn.init mark]
while stack do

nm←stack.pop()
\* Generate all maximal concurrent steps from the current marking
all MCS=gen max conc step(pn,nm)
for aMCS∈all MCS do \* Exploring them
\* Check if it is a subcells of or equal to a currently existing max cell
if ∃mc∈mhda.max cells() : (nm,aMCS)⊑(mc.m,mc.c) then

continue
\* We have found a new max cell
nc=mhda.add cell(nm,aMCS)
\* Check if the new cell subsumes existing ones
for sc∈mhda.max cells() : (sc.m,sc.c)⊑(nc.m,nc.c) do

mhda.delete cells(sc)

\* Iterate over all possible concurrent steps
for cs∈2aMCS do
\* Compute marking of the corner
mo=nc.mi+fire(cs)
\* Verify that it is not already pushed or explored
if ∃s /∈stack : co=s∧∄m∈mhda.max cells() :

m ̸=nc∧(mc,{})⊑(m.m,m.c) then
stack.push(co)

Note that, despite looking like a special case, (m,{})⊑ (m′,c′) and (m,c)⊑ (m′,c′) are the507

same. For computation, the later is reduced to (m,{})⊑(m′,c′′=c′\c).508

Due to timing constraints this version of the algorithm could not be tested properly for this509

work, but itwill be available soon at https://gitlabev.imtbs-tsp.eu/philipp.schlehuber-caissier/pn2hda/-510

/tree/sub/msr25.511
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