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Abstract

Higher-dimensional automata (HDAs) extend classical automata by explicitly modeling
concurrency through n-dimensional cells, each representing n parallel events. Thanks to the
cubical structure of HDAs, these cells implicitly determine their lower-dimensional faces via
face maps, capturing all their interconnections.

In recent years, interest in HDAs has grown significantly, in particular as they generalize
most concurrent formalisms. In a recent contribution, we proposed translations from Petri
nets, including common features like weights, inhibitor arcs and even self-modifying nets to
HDAs, along with a working implementation. However the representation and data struc-
tures retained in this work are directly drawn from the mathematical description of HDAs
and do not take advantage of the HDA’s structure.

In this paper, we take initial steps toward leveraging this implicit structure. We propose
what we call the max-cell representation of an HDA: instead of storing all cells, we retain
only those that are not induced by higher-dimensional ones. This can lead to an exponential
reduction in the number of stored cells and face maps while preserving all the information
needed to reconstruct the full HDA. To demonstrate its effectiveness, we present a new
algorithm that directly translates Petri nets into max-cell HDAs.

1 Introduction

Petri nets and HDAs are two operational model that aim at expressing concurrency between
events. In both formalisms, events may occur simultaneously. Besides, both make a distinction
between parallel composition a || b and choice a-b+b-a. However, Petri nets are often considered
through their interleaving semantics, thus reducing their expressive power and therefore effec-
tively reducing a || b to a-b+b-a. As an example, Figure 1 shows two Petri nets and their HDA
semantics: on the left, transitions a and b are mutually exclusive (as ensured by the token in ps)
and may be executed in any order but not concurrently; on the right, there is true concurrency
between a and b, signified by the filled-in square of the HDA semantics. In interleaving semantics,
no distinction is made between the two nets and both give rise to the transition system on the left.
To tackle this issue, [12] introduced concurrent step-semantics. In this semantics, a limited
form of parallelism is introduced: two parallel events must start simultaneously and end simulta-
neously. While the expressivity is strictly greater than when only considering interleavings, it is
shown that some possible behaviours were missed [5]. We illustrate this in Figure 2. In the Petri
net, a and b can be fired concurrently. Besides, firing b enables a second firing of b. The behaviour
of concurrent step-semantics is given by the graph on the right. However, it misses the possibility
that the second a starts while the first a is running, as represented by the additional trajectory.

*Partially funded by the Academic and Research Chair “Architecture des Systémes Complexes” Dassault Avi-
ation, Naval Group, Dassault Systéemes, KNDS France, Agence de I'Innovation de Défense, Institut Polytechnique
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Figure 2: Concurrent step-semantics miss some possible behaviours

Van Glabbeek [16] first explored the relations between Petri nets and HDAs, where an HDA
is defined as a labeled precubical set whose cells are hypercubes of different dimensions. More
recently, [9] introduces an event-based setting for HDAs, defining their cells as totally ordered
sets of labeled events. This framework has led to a number of new developments in the field of lan-
guages and logics for HDAs: a Kleene theorem [10] which relates HDAs and regular expressions;
a Myhill-Nerode theorem [11] which constructs HDAs out of a prefix equivalence on regular lan-
guages; a proof of decidability of language inclusion [6], a notion of monadic second-order logic for
HDASs and a corresponding Biichi-Elgot-Trakhtenbrot theorem, [2,4], a notion of temporal logic
for HDAs and corresponding Kamp’s theorem [7] based on [3] relating HDAs to a subclass of stan-
dard automata, and an extension of HDAs and timed automata called HDTAs was explored in [1].

Concretely, HDAs are composed of cells, each associated with a list (called conclist) of events
that are active in them. A 0-dimensional cell corresponds to a states with no active event, a 1-
dimensional cell represents a transition (as in standard automata) with exactly one active event,
and an n-dimensional cell captures concurrent behaviours involving n active events. These cells
are interconnected through face maps. As an example, the HDA on the right in Figure 1 includes
one two-dimensional cell, that we denote z, in which a and b (hence [§]) are active. It also contains
two 1-dimensional cells where a is active, two where b is active and four O-dimensional cells. Lower-
dimensional cells (or faces) are connected to higher-dimensional ones via lower and upper face
maps, which specify when individual events start or terminate. For instance, the lower face 58(;10)
of x corresponds to the lower a transition where b is not yet started, while the upper face (5,} (x)
represents the upper a-transition in which b is terminated. Similarly, §2(x) is the left b-transition
and 6, (z) is the right b-transition. The composition 6267 (z) =692 (x) identifies the bottom left
0-dimensional cell and 016} () =6} 8% () corresponds to the upper right 0-dimensional cell.

In [5], Van Glabbeek’s translation from Petri nets to HDAs [16] was adapted to the event-based
setting and extended to cover additional Petri net semantics, such as nets with inhibitor arcs.
The paper also provided an implementation of these translations. However, this implementation
was carried out in a naive manner. For the first version of the pn2HDA tool, we followed the mathe-
matical definitions as closely as possible. This means to explicitly define each cell of the HDA and
all of the face maps between them, leading to an explosion of the memory required to store the
HDA. Indeed, an n-dimensional cell (roughly corresponding to a hypercube of dimension n) has
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in total 3™ cell of dimension at most n. More generally, this base version performs poorly—even
in comparison to standard explicit Petri net tools. As shown in [5], the standard reachability
graph of a Petri net corresponds to the restriction of the resulting HDA to its 0-dimensional
cells. This means that this base version is systematically at a disadvantage, both in terms of time
and memory usage. Moreover, each cell in the HDA must store more information, not only the
marking, but also the multiset of events that are active within it. In contrast, classical tools only
store markings for places and source/target data for steps.
In this work, we extend the initial imple-

mentation by addressing its naive aspects. We e SudoruPTA Al Cels
adapt the translation algorithm from Petri — 10° - Sudoku-PT-A Max Cells
. P —A— afcs All Cells
nets to HDA to retain, on the fly, only the TAL & afcs Max Cells
. . . 10° § < AirplaneLD All Cells
strictly necessary cells: those of maximal di- AirplaneLD Max Cells

mension, which in turn allow us to deduce 1)
all the implied lower-dimensional cells. For

instance, storing a single 2-dimensional cell 310 /‘/ \\
where a and b are active is sufficient to recon-

# of cells

struct the entire HDA depicted on the right *

in Figure 1. For each pair of maximal cells, we ;4]

also store multisets of events that enable reach- *

ing a shared face, so that the full structure can 19 .\‘ ‘

be reconstructed. Indeed, each maximal cell 0 2 o stdmC 8

induces an HDA on its own, and the multisets

associated with shared faces allow to identify Figure 3: Comparison number of cells vs max-
common cells between these local HDAs and ~ cells, examples taken from mcc.

reassemble the complete one. Figure 3 high-

lights the number of cells saved by our approach, compared to the naive construction.

This article is organised as follows. We begin in Sect. 2 and 3 by recalling HDAs and Petri nets,
focusing on their concurrent semantics which allows several transitions to fire concurrently. The
following sections present our proper contributions. We give a brief overview of the translation
from [5] in Sect. 4, followed by the improvements we brought. These are summarized in Sect. 5,
with an updated algorithm alongside examples. Finally, we evaluate this algorithm in Sect. 6 to
illustrate the (often exponential) reduction in the size of the representation.

2 Higher-Dimensional Automata

Higher-Dimensional Automata (HDA) form a class of models which extend finite automata. They
provide extra structure that allows one to specify independence or concurrency of events. They
are constituted of cells connected by face maps. Each cell contains a (ordered) list of events
representing the active events, and face maps terminate (upper maps) or “unstart” (lower maps)
some events.

More formally, let ¥ be an alphabet. A concurrency list (conclist) is a tuple (U,--+,\) with
U a finite set of events, --+C U x U a total order called the event order, and a labelling function
A:U — X. They represent labelled events running in parallel. For the sake of briefness, when
no ambiguity arises, a conclist will be denoted by its underlying set, i.e., denoting U instead of
(U,--»,A) (and similarly for other structures defined along this paper). We denote by O(X) (or
O when the context is clear) the set of conclists over X.

A precubical set (X,ev,{(SA)B;U |Ued,A,BCUANB= @}) consists of a set of cells X
together with a function ev: X — . For a conclist U we write X[U] ={x € X |ev(z) =U} for
the cells of type U. Further, for every U € O and A,B C U with AN B = () there are face maps

3
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04,80 X[U]— X[U\ (AUB)] which satisfy the precubical identity
dc,piu\(AuB)9A,B;U =0 AUC,BUD:U (1)
for every Ued, A,BCU, and C,DCU\(AUB).

We will often omit the extra subscript “U” in the face maps and often write §% for & A0
and 8% for 0y 5. The upper face maps dp transform a cell z into one in which the events in
B have terminated; the lower face maps 04 transform z into a cell where the events in A have
not yet started. These cells are sometimes called subcells of z. Every face map d4 g can be
written as a composition §4 g =0965 =0569, and the precubical identity (1) expresses that these
transformations commute.

As mentioned above, we associate to each cell of a precubical set a set events totally ordered
by the event order: a conclist, instead of a multiset. Conclists are hence lists or words of 3*,
but we often write them vertically to emphasize that the elements are running in parallel. This
ordering is crucial in the presence of autoconcurrency, where multiple events may share the same
label, as it allows us to determine which events are unstarted or terminated by the face maps.
Formally, event order is needed to ensure uniqueness of conclist isomorphisms [9]: two conclists
(U1,--+1,M\1) and (Us,--+9,\2) are isomorphic if there exists a bijective mapping ¢ such that
a--+1 b iff p(a) --+1 p(b) and Ay 0p = A;. Nevertheless, this technical detail is not central to
the present work: since the event order has no computational significance, we often omit it and
assume that it goes downwards.

We write X,, ={z € X ||ev(z)|=n} for n€ N and call elements of X, n-cells. The dimension
of z € X is dim(z) =|ev(z)| € N; the dimension of X is dim(X ) =sup{dim(z) |z € X} e NU{o0}.
For k€N, the k-truncation of X is the precubical set X <F ={z € X |dim(x) <k} with all cells of
dimension higher than k removed.

A higher-dimensional automaton (HDA) A = (X,X, 1) consists of a finite alphabet X, a
precubical set X on X, and a subset L C X of initial cells. (We will not need accepting cells in
this work.) An HDA may be finite or infinite, or even infinite-dimensional.

Computations of HDAs are paths, i.e., sequences

04:(:COaSOl,flr“,fnflv(;onaxn) (2)
consisting of cells z; of X and symbols ¢; which indicate which type of step is taken: for every
i€{l,...n}, (zi—1,p:,x;) is either

o (09 (), M 2;) for ACev(z;) (an upstep)
o or (z;—1,\ua,04(wi_1)) for ACev(z;_1) (a downstep).

Intuitively, a downstep terminates events in a cell, following an upper face map. This is why
downsteps require that A Cev(x;_1), i-e., events that are terminated belong to the cell. Similarly,
an upstep starts events by following inverses of lower face maps. The constraints on upsteps
require that A Cev(z;), i.e., the initiated events belong to the next cell after the step. Both types
of steps may be empty.

A cell x € X is reachable if there exists a path « from an initial cell to x, i.e., xp € L and
Z, = in the notation (2) above. The essential part of X is the subset ess(X) C X containing
only reachable cells. Note that, in general ess(X) is not necessarily an HDA, in particular when
1NXo=0, in which case some 0-cells will be missing. However, this situation does not arise in
our setting: we only consider HDAs X generated from Petri nets (see Section 4), whose initial
cells are always of dimension 0 and for which ess(X) is an HDA. (This is a general principle: for
any HDA X with L x C Xy, ess(X) is also an HDA [11].)

Example 2.1. Figure 4 shows a two-dimensional HDA as a combinatorial object (left) and
in a geometric realisation (right). It consists of nine cells: the corner cells Xo = {z,y,v,w}

4
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X0 ={v,w,z,y} x Y
X[al={e.f} 1 f 1
X[b]={g:h} bl g ‘ h
X[[E]={q} 1

Lx={v,g} e _

Figure 4: A two-dimensional HDA X on ¥={a,b}, see Example 2.1.

(depicted in blue) in which no event is active (for all z € Xy, ev(z) = 0), the transition cells
X1={g,h,f.e} (shown in red and green) in which precisely one event is active (ev(f)=ev(e)=a
and ev(g) =ev(h) =b), and the (gray) square cell ¢ where ev(q) =[%], i.e. a and b are executed
concurrently.

The arrows between the cells on the left representation correspond to the face maps connecting
them. For example, the upper face map 6;6 maps q to y because the latter is the cell in which the
active events a and b of q have been terminated. On the right, face maps are used to glue cells
together, so that for example 8},(q) is glued to the top right of q. In this and other geometric
realisations, when we have two concurrent events a and b with a--+b, we will draw a horizontally
and b vertically.

All the cells of the HDA X of Figure 4 are reachable from the initial cells {v,g}. For example h
is reachable by v /% g \a h, v /% S g \wu h orv g 7% q N\ h. Consequently, h is also
reachable from g, and the transition h ™\ vy may then be added to reach y.

3 Petri nets

A Petrinet N=(S,T,F) consists of a set of places S, a set of transitions T, with SNT'=0, and a
weighted flow relation F': SxTUT xS — N.

A marking of N is a function m : S — N, associating each place to the number of tokens
present. A Petri net N =(S,T,F) together with an initial marking i: S — N is called a marked
Petri net. A marked Petri net is k-bounded if m(s) <k for every place s. It is bounded if there is
a value k€N such that m is k-bounded.

Let E be any set. A function f: E— N is a multiset, i.e., an extension of sets allowing several
instances of each element of F.

We introduce some notation for these. We write x € f if f(z) >1. Given two multisets fi, fo
over E we will write f1 < fo iff f1(z) < fo(x) for every element x € X. If f(x)€{0,1} for all z, then
f may be seen as a set, and the notation x € f agrees with the usual one for sets. The multisets
we use will generally be finite in the sense that ) . f(x) < oo, and in that case we might use
additive notation and write f =3 _p f(x)x. This notation easily applies to markings of Petri
nets, and we will write for instance m =2p, +p4 for a marking such that m(p;) =2,m(ps) =1, and
m(p;) =0 for any other place p; € S\ {p1,p4}.

For a transition ¢t € T', the preset of ¢ is the multiset *¢: S — N given by *t(s) = F'(s,t). This
preset describes how many tokens are consumed in each place when t fires. The postset of t is
the multiset ¢* : S — N such that ¢*(s) = F(¢,s). It describes how many tokens are produced
in each place of the net when firing ¢. For the sake of simplicity, all examples in this paper
deal with Petri nets where F'C (S xT)U(T x S), that is, for every place s and transition ¢, we
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&

? ps [pr+pa——{p2+pi] [pr+pa——{p2+pi]

"7
5

D2

Opi —pitpsl——fpatps]  —[pitpsl——{p2+ps]

Figure 5: A Petri net N (left); the reachability graph [N]; (middle); and its concurrent step
reachability graph [N]cs(right).

have *t(s),t*(s) € {0,1}. However, the algorithms described here and their implementation are
designed to handle the general case.

Petri nets compute by transforming markings. Their standard semantics is an interleaved
semantics, where states are markings and a single transition can fire at each step. Let m: S —IN
be a marking and ¢t € T, then ¢ can fire in m if *¢ < m. Firing ¢ produces a new marking
m' =m—°t-+t°.

The reachability graph (see for example [8]) of Petri net N = (S,T,F) is the labeled graph
[N]1=(V,E) given by V=N and

E={(mtm)eVxTxV|*t<m,m =m—"t+t*}.

(The reason for the subscript 1 in [N]; will become clear later.)

In areachability graph vertices are markings and edges are labeled by the transition which fires.
A computation of a Petri net is a path in its reachability graph. Note that we use collective token
semantics, i.e., tokens in *t that are consumed by firing ¢ are considered as blind resources. Petri
nets also have an individual token semantics [13] where transitions distinguish tokens individually
by considering their origin. This may be used to model realisation of independent processes; but
we will not consider it here.

Let N1,N3 be two Petri nets. The reachability graphs [N1]1 = (V1,E1) and [Na]; = (Va, E2)
are isomorphic, denoted [N1]1 = [Na]1, if there exist bijections f:V; — V5 and g: E; — E5 such
that for all e; = (mq,t1,m}) € E1, g(e1) = (ma,ta,mb) iff f(m1)=ms and f(m))=mb.

Considering Petri nets via their interleaved semantics misses an important point of the model,
namely concurrency. Indeed, it does not allow to distinguish between behaviours where a pair
of transitions fire in sequence from behaviours where these transitions are independent and can
fire concurrently. One way to cope with this issue is to consider executions of Petri nets as
processes [13], that is, partial orders representing causal dependencies among transitions occur-
rences. Another possibility is the use of a concurrent step semantics [12], where several transitions
are allowed to fire concurrently. The concurrent step semantics mimics that of the interleaved
semantics, but fires multisets of transitions.

For a multiset U : T'— N of transitions we write *U =", _*tU(t) and U® =3, t*U(t).
U is firable in marking m if *U < m. The concurrent step reachability graph [14] of Petri net
N=(S,T,F) is the labeled graph [N]cs = (V,E) given by V=N* and

E={(mUm/)eVxNT xV|U#D,*U<mm'=m—"U+U"}. (3)

Figure 5 shows a simple example of a Petri net and its two types of reachability graph. Note that
transitions in [N]cs allow multisets of transition rather than only sets, thus several occurrences
of a transition may fire in a concurrent step. This feature is called autoconcurrency, and it is well
known that allowing autoconcurrency increases the expressive power of Petri nets [15]. Further,
[N]cs is closed under substeps in the sense that for all multisets V <U, if (m,U,m") € E, then we
also have (m,V,m’) € E and (m/,U\V,m") € E for some marking m/'.

Notice that our definition of Petri nets allows preset-free transitions ¢ with *¢ = (). When a
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(p47a)
P1+pa P2+pa

X [0)={p1+ps,p2-+p3,p1+pa,p2+pa}
X[a] = {(p37a)7(p47a)}

X[b]={(p1,b),(p2,b)} (p1,b) (0,[]) (p2,b)
X[[5]]=1(0,[z])}
X[[]=A,[D)}

p1+Dp3 p2+Dp3

b3,a

Figure 6: Higher-dimensional automaton (reachable part only) for the Petri net of Figure 5. Left:
sets of cells; right: geometric realisation (not showing X [[%]]).

transition ¢ has an empty preset, then t is firable from any marking. In an interleaved semantics,
allowing preset-free transitions does not change expressive power, so one frequently assumes that
*t+£( for every t € T. In the setting of a concurrent semantics with autoconcurrency, an arbitrary
number of occurrences of each preset-free transitions may fire from any marking. Because of this,
every vertex in [N]cs would be of infinite degree. We will generally allow preset-free transitions
in what follows, however as the resulting reachable markings is infinite, the algorithms we describe
will not terminate. Notice that postset-free transitions (i.e., transitions ¢ with t* = )) are not
problematic. They do not cause the reachability graph to become infinite.

4 From Petri nets to HDASs, revisited

A construction from a Petri net N to higher-dimensional automaton [N] was first explored in
[16, Definition 9]. This construction was adapted in [5] to the event-based setting of HDAs
introduced in [9] where the labels of the events in [N] are the transitions of N.
Let N = (S,T,F) be a Petri net. Let 0= [(7T) and define X =N x [J and ev: X — [ by
ev(m,r)=7. For x =(m,7) € X[r] with 7= (¢1,...,t,,) non-empty and i€ {1,...,n}, define
5?1 (I) = (m+'t¢,(t1 ;~~~7ti—1 ;ti—i-l 7...,tn)),
5,; (.17) = (m—i—t:,(tl a~-~7ti—1 ati-l-l ,,tn))

Eq. (1) could be used to generate the face maps terminating or unstarting multisets of events,
in order to define a precubical set [N] = X. From a practical point of view this is however not
necessary. In [5] and this work we are concerned with state-space exploration and reachability
properties. In this context, there is no difference between using a face map with a multiset of events
and its decomposition into a series of “elementary” face maps using a single event. Hence, a path
in [N] is a computation in N in which steps start or terminate single events and concurrency of
events, i.e. transition that fire concurrently in the net, can be retrieved by looking at the conclist
of the cell in which the computation currently finds itself.

Note that the O-cells of [IN] correspond to the markings of N and in an n-cell of [N], n
transitions of N are running concurrently. It was shown in [5] that [N] is closely related to both
the reachability graph and the concurrent step reachability graph of N. Specifically, the graph
whose vertices are the O-cells of [ N] and whose edges are triples of the form (69 (x),z = (m,t),6; (x))
is isomorphic to the reachability graph of N (see [5, Lemma 4]). Furthermore, consider the graph
with the same vertex set (the O-cells of [N]), and edge set

E={(2,U0,2)|3y€ X : Gg,(y) =1, 0oy (y) = 2, pifev(y)) =U},

ev(y) ev(y)
where, for a sequence a=(ay,...,a,, ) €J(X) over some alphabet X, the Parikh image pi(a): X —N
is defined by counting symbol occurrences pi(a)(z) =|{i|a; = «}|. This graph is isomorphic to
the concurrent step reachability graph of NV (see [5, Lemma 5]).
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Note that for the initial marking ¢ of the marked net, we have i € [N][(], the construction
above induces an HDA [N] = (7, X, 1) with its initial cell set to L ={i}. In addition, as firable
transitions only depend on the current marking, and as the effect of a firing is deterministic, when a
marked net is bounded, the reachable part of [ N]; is finite. However, due to autoconcurrency, this
property does not hold for the full [N], as shown in [5, Example 6]. Nevertheless, when marked
Petri net N is bounded and has no preset-free transitions, then [N] is finite [5, Proposition 7].

The above definition of the HDA [N] is highly symmetric: for a given cell defined by its
marking m and its conclist 7, ¢ = (m,7), there exists another cell ¢ = (m,7’) with 7/ being a
permutation of 7. However, in fine we are only interested in the multiset of concurrently active
transitions. In order to avoid the factorial blow-up in the number of cells, we fix an arbitrary
(non-strict) total order < on the transitions in 7" and then instead of O(T") 2T consider the set
T;Z :{(tl,...,tn) |Vz:1,,n—1tl #tﬁ,l}

The definition of the face maps of this reduced X =[N] stays the same, and X is now a (non-
symmetric) precubical set with one cell for every marking m and every multiset of transitions 7.

Figure 6 shows the HDA [N] for the Petri net N of Figure 5 with initial marking i=p; +ps.

While this transformation is effective, it is not efficient. By keeping in memory all cells, we
waste computational resources and do not take advantage of the HDA’s structure. One can
notice that by knowing a cell, one can deduce its subcells. As 0-cells are uniquely defined by the
corresponding marking in the Petri net, we can reconstruct the HDA knowing only the cells of
highest dimensions and how to reach their shared faces. This is formalized in the following.

Let us first define for an HDA X and two cells 2,y € X the set of faces that « and y share
th(%y) = {Z eX | aszBmAyaBy L 2= 6Ax,Bz,ev(ac) (l’) = 6Ay,By,ev(y) (y)}

Definition 1 (Max-Cell HDA representation (MHDA)). The maz-cell HDA representation of
an HDA A defined by its set of cells X and its face maps 6° and 61 is the pair Amax = (Xmax,0max)
where:

o Xpx={reX |PyeX,ac: 2=62(y) orx=35(y)}: the cells of X that are neither lower
nor upper face maps of any cell in X
e For each x,y € Xmax, if

— there exists z €shx (x,y) such that z=04, B, ev(z)(T) =04,,B, ev(y) (V)
— and there is no wE€shx (z,y), a€X such that z=52(w) or z=46(w)

then ((Az,Bz),(Ay,By),(ev(z),ev(y))) € dmax, for some Ay, Ay, By, By €. This is the set of
multisets one must unstart and terminate in respectively ev(x) and ev(y) to reach from both
2,y € Xmax a shared face which is mazimal insh x (z,y). We write 0(A,,By),(Ay,By),(ev(@),ev(y))
when (Az,Bg),(Ay,By),(ev(z),ev(y)) € Omax-

This reduced representation retains all the necessary information. Indeed, each maximal cell
2 € Xpax of dimension n determines an n-dimensional HDA: it contains a single n-cell, namely
x, and all lower-dimensional faces can be uniquely reconstructed from it using the precubical
structure. The relation d,,,x then serves to identify the shared cells between these HDAs: knowing
how to reach a maximal shared face from two maximal cells x and y is sufficient to deduce the
other shared faces and the ways to reach them from x and y (see Example 5.1). In the next section,
we present an algorithm that constructs an MHDA from a Petri net, such that the corresponding
HDA is the same as the one obtained via the translation from [5].
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NO:[1,1,0,0,01x[1  N6:[0,0,0,0,11x[]
N1:[0,1,0,0,0]x[a] N7:[0,0,0,1,0]x[a]
N2:[0,0,0,0,0]x[a,b] N8: [0,1,1,0,0]x[]
N3:[0,0,1,0,0]x[b] N9:[1,0,0,0,01x[b]
N4:[0,0,1,1,0]x[1  N10:[1,0,0,1,01x[]
N5:[0,0,0,0,0]x[c] N11:[0,0,0,0,0]x[x]

N1:[1,1,0,0,0]x[x]

N3:[0,0,1,1,0]x[c]

N2:[1,1,0,0,01x[a,b]

Figure 7: A Petrinet, its corresponding HDA (geometrical on the bottom left and state view on the
middle), with its MHDA. Top obtained from reducing an HDA, bottom from direct translation.
Note that here both, N1 and N2 are intial cells.

5 Algorithm

5.1 Reduction from HDAs to MHDASs

As a first step, we implemented a translation from HDAs to MHDASs, and therefore, by using
the translation from Petri nets to HDAs introduced in [5] also from Petri nets to MHDAs. The
most expensive part of this translation is finding the maximal shared faces between max-cells,
as this necessitates checking for each pair of max-cells if they have a common face. Once such
a face is found we also need to determine its maximality, involving the inclusion check of con-
clists of the face itself, but also of the multisets allowing to attain it. That is a face map entry
5(A;,B;),(A;l,B;),(ev(w),ev(y)) is considered larger than a face map entry 5(Am,Bw),(Ay,By),(ev(z),ev(y))
if and only if the following conditions hold:
(I) ev(z)\ (A UB,) Cev(z)\ (ALUB.) (I) AL, CA,AB.CB, (III) A; gAy/\B; CBy

The first condition ensures the maximality of the shared face itself, the second and third
conditions ensure that both face maps use “comparable” events. This is particularly important
when parallel transitions are present: set of transitions sharing the same pre- and postset.

Example 5.1 (Comparison of the standard and max-cell representation of an HDA). In Figure 7,

a Petri net is depicted on the upper left alongside its resulting HDA, with the geometrical view
bottom left and its representation as starter-terminator automaton in the middle: each transition

9
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corresponds to the start (such as a+) or the end (such as b—) of an event. The MHDA is repre-
sented on the bottom right. Note that the transition x is parallel to [§]. Therefore, firing x or the
set {a,b} in a concurrent step has the same effect on the marking.

The fact that 3] is parallel to x, i.e., causes the same marking change, becomes clear when look-
ing at the paths from NO to N4. On the MHDA, there are only three maz-cells, with the conclists [$)
(N2),x (N11) and c (N5). Here transition need to be read as (Ay,By);(ev(x)\ Az UB,);(Az,Bz),
that is we list the events that need to unstarted / terminated from the source and target cell to get
to the shared face with the given conclist. It can be clearly seen that the 2-cell N2 shares the all
“all events unstarted” and “all events terminated” 0-cells with N11 corresponding to them being
parallel. The first transitions unstarts all events, the second transitions terminates them. Note
that in this ezample, we reduced the number of cells from 12 to 3, but even more importantly, the
number of distinct markings (which has a significant impact on memory consumption) drops from
10 to 1.

All of this causes the reduction algorithm to be fairly expensive exemplified in Table 1. At
the same time, the table also highlights the possible gains using the MHDA representation: The
number of cells, face map entries and even more so the number of distinct markings and conclists
is significantly reduced. Table 1 illustrates the spatial gain of the new MHDA representation
compared to the previous naive HDA representation. For both, we reported the number of cells,
conclists, and markings saved in the final data structure on multiple examples. In the table, we
also highlight the time cost of the new conversion algorithm compared to the previous one.

HDA MHDA time (ms)

Name cells | conclists | markings || cells | conclists | markings || PN—HDA | HDA —MHDA

abx_1 12 6 10 3 4 1 0.04 0.1

abx_2 69 20 46 6 18 1 0.2 7

abx_3 272 50 146 10 48 1 0.6 193

abx_4 846 105 371 15 103 1 2 4450

abx_5 2232 196 812 21 194 1 9 74.10°
Sudoku-PT-A-N0O1 3 2 3 1 1 1 0.008 0.004
Sudoku-PT-A-N02 | 177 35 176 6 23 5 0.4 19

afcs_01_a 4727 941 1076 417 941 12 21 865.10°

Table 1: Comparison of HDA and MHDA space complexity. The Sudoku and afcs instances are
taken from the mcc, abx_n corresponds to our running example with n tokens in py and p; .

5.2 A first direct translation from Petri nets to MHDASs

As shown above, the reduction from HDAs to MHDAS is expensive, in particular due to the large
number of inclusion checks between conclists. To remedy this issue we present a direct translation
from Petri Nets to MHDAS in this section.

The basic idea is to iteratively construct the MHDA by exploring the reachable max-cells. We
strive for a minimal memory footprint at the expense of runtime by never storing the reachable
markings (corresponding to 0-cells) but only generating them on the fly when necessary.

In Algorithm 1 the definition of a max-cell is slightly different from the one used before. Instead
of the marking of the cell itself, we add the preset of all currently executed transitions, as this
allows to express certain operations more naturally and efficiently.

We write (m,c) C (m/,c’) to denote that a cell lc= (m,c) defined by its initial marking m and
conclist ¢ is a subcell of ¢’ = (m/,¢’). This is expressed by splitting the conclist ¢’ into two parts
u and v, such that
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Algorithm 1 Petri net to MHDA

Require: Input: Petri net pn
Require: Output: Corresponding max HDA
mhda + empty_mhda()
\* Stack of markings to visit
stack < [pn.init_mark]
while stack do
nm < stack.pop()
\* Generate all maximal concurrent steps from the current marking
all_MC'S = gen_mazx_conc_step(pn,nm)
for aMCSeall_MCS do \* Exploring them
\* Check if it is a subcell of or equal to a currently existing max cell
if Jlce mhda.mazx_cells(): (nm,aMCS)C (le.m,lc.c) then
continue
\* We have found a new max cell
nc=mhda.add_cell(nm,aMCS)
\* Check if the new cell subsumes existing ones
for sce mhda.max_cells(): (sc.m,sc.c) C (nc.m,nc.c) do
mhda.delete_cells(sc)

\* Tterate over all possible concurrent steps
for cs€2*MCS do
\* Compute marking of the corner
co=nc.m+fire(cs)
stack.push(co)

e ¢ =u U v with the conclists seen as multisets
o m=m'—*u+u® reach the corner of lc from the corner of /¢’
e cCw the conclist of lc is subset by whatever is left in ¢’ after firing the events in u.

These constraints are necessary and sufficient to ensure that the cell mc is a subcell of mc’.
In order to avoid the explicit generation of subcells during inclusion checks, we reformulate the
problem as an integer program.

gen_max _conc_step(pn,m) generates the list of all maximal concurrent steps that can be fired
from the marking m. That is for any cs in the resulting list gen_max_conc_step(pn,m) (again,
each concurrent step is represented by a multiset) we have ®cs <m. It being maximal means that
we can not add any transition to the multiset cs without violating the fireability constraint.

5.3 An example of the conversion

We illustrate Algorithm 1 with an example continuing Example 5.1 and represented in Figure 7.
Intuitively, in this Petri net, there are mutually exclusive ways to enable transition c, either by
firing (concurrently or sequentially) a and b, or by firing x. In the HDA, this is represented by the
[7] square and x 1-cell. Notice that these two only share the lower and upper faces Ny and Ny.
As the cells of a MHDA are represented by a couple (m,c), with m the marking of the 0-cell
where all events are unstarted, and cits max-conclist, we represent the conclist labels on the 1-cells
and the markings are named (from mg to my4 included) on the 0-cells of the HDA figure. By doing
so, we can iterate over the conversion process with the same names. The stack is represented as
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a bracketed list, with its first element being the latest inserted and first to be processed (even if
the order does not matter to explore the whole structure).

First, we start with an empty HDA, an empty stack and the initial marking mg =pg+p1 as
the current marking. In this case, we will create all max-conclists. This results in the conclists
set {[=],[¢]}. By iterating over this set, we will first add the max 1-cell (mq,[z]), and the marking
ms3 = pa + ps is added to the stack. Then, the max 2-cell (mq,[3]) is added to the HDA. Note
that, depending on how the set is represented, it could have been explored first, but this does not
change the result. With this new cell, the markings mi =p1 +p2, ms =po+p3, and mz=ps+p3 of
the 3 remaining corners of the 2-cell have to be added to the stack as well. Then, the marking mg
is processed. This marking was generated by the two max-cells already created. However, after
processing its max conclist (which is unique in this case), we obtain the conclist [¢], which is not
a sub-conclist of any of the max-cells already generated. Therefore, the cell (ms3,[c]) is a new cell
and is added to the HDA. The marking m4 = p4 is also added to the stack. While all maximum
cells have been created, the algorithm still has to empty the stack to ensure that the exploration
is complete. By processing my4, we notice the max-conclist set is empty: there is no transition we
can fire here. The marking is thus ignored. Then, the markings my and m; have 1 max-conclist
each ([¢] and [b] respectively). However, for both cells ¢ € {(mq,[v]),(m2,[a]) }, we have ¢ T (my,[¢]).
So, both cells found in markings m; and ms are in reality sub-cells of an already existing max
2-cell, and they are not added to the MHDA. Finally, the marking mg is the starting point of
the cell (mgs,[c]) explored previously. Therefore, this marking was already explored and there
is no interest in searching for its max-conclists. The stack is now empty and the conversion is
successfully done. Note that currently, for direct MHDA construction, we only store a simplified
version of the face maps, containing only the information about the source and destination cell.
These transition form a spanning tree of the complete MHDA and this sufficient for reachability
questions. If needed, the more detailed information about shared faces can be recovered.

Computing State Space properties from MHDA Using our reduced representation for
reachability problems is fairly straight forward, however computing properties of the state space,
i.e., properties of the reachability graph of the Petri Net which is equivalent to the 1-truncation
of the HDA, turns out to be fairly involved and we do not have a closed form solution yet.

Some of the arising problems are illustrated in Figure 8. This
HDA has a single 3-cell with conclist [é} . The standard calcu-

lation tells us that there are 33 =27 cells in the HDA. However
this only holds when there is no autoconcurrency. Due to auto-
concurrency, there are several cells that are identified with one
another. That is they share the same marking and conclist, in »
the figure all identified cells share the same shape or line style. Figure 8: HDA recognizing [g}
The actually geometric interpretation is therefore a cube “folded

onto itself” on certain faces, edges and corners. In fact there is one 3-cell, 2 2-cells (the faces neigh-
bouring the initial corner, and those neighbouring the diamond shaped top right corner), 3 1-cells
identified by the line styles, and 3 0O-cells identified via shape, for a total of 9 cells.

This phenomena does not only occur when there is autoconcurrency, but also when the conclist
contains sets of parallel transitions. Additionally, to correctly compute state space properties, we
would have to take into account the face maps and their shared faces, making the problem rather
complex.
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HDA MHDA time (s)
Name cells | conclists | markings || cells | conclists | markings || PN—HDA | PN—MHDA
abx_3 272 50 146 10 10 4 0.003 0.7
abx 4 846 105 371 15 15 5 0.005 4
abx_5 2232 196 812 21 21 6 0.008 13
abx_6 5214 336 1596 28 28 7 0.01 44
Sudoku-PT-A-N02 | 177 35 176 6 23 5 0.4 19

Table 2: Comparison for direct MHDA construction. Note that the number of conclists necessary
may be different here from the one reported in Table 1 as the face maps do not store detailed
information. abx_n refers to our running example with n tokens in py and p; .

6 Evaluation

Here we present the results of concerning the number cells, conclists and markings needed to
represent the MHDA | as well as the execution time for a selected set of benchmarks. We give
the execution time for completeness, but it needs to be handled with care: currently the overall
runtime is dominated by the cost of inclusion checks. These are very solver and formulation
dependant and can in our opinion be greatly improved with further development. To reproduce
these results and for further insights please see https://gitlabev.imtbs-tsp.eu/philipp.schlehuber-
caissier/pn2hda/- /tree/sub/msr25.

7 Conclusion

To address the combinatorial explosion of the translation from Petri nets to HDAs, we proposed a
reduced representation and a refined algorithm that, given a Petri net, does not construct the full
HDA explicitly. Instead, it computes only an MHDA representation: a set of so-called maximal
cells along with relations between them. The resulting compact representation drastically reduces
the number of cells, conclists and markings that need to be stored, and the full HDA can be
reconstructed when needed.

This work represents a first, yet promising, attempt at efficiently representing HDAs generated
from Petri nets, while avoiding their full explicit construction. In practice, our construction tends
to be slower than building the full HDA, but the memory savings make the approach beneficial
overall. That said, both the algorithm and its implementation could be improved, especially to
reduce runtime. This can be done by improving the exploration and computing the maximal
concurrent steps from the faces of cells and not corners. This intertwines the generation of the
maximal concurrent steps and their exploration reducing overall complexity.

Finally, our reduced representation of HDAs could also be used in logic-to-HDA translations
for model checking purposes. The appeal of HDAs lies in their ability to accept all possible
interleavings of a given execution. This property naturally supports partial-order reduction
techniques and can significantly enhance state-space exploration in system modeling. Several
recent works [2,4,7, 18] have explored connections between modal, first-order, and second-order
logics and HDAs and we seek to adapt them to work directly on MHDAS.
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A Improvements to the algorithm

As reported in Table 2, the runtime of the new algorithm is significantly worse than the one of
the original algorithm. This is partly due to the costly inclusion check, currently performed via a
reduction to an integer program, which is then fed to z3 via its C++ API. However, z3 is capable
of solving SMT problems, and using a more dedicated solver might improve performance. On the
other hand, many optimizations concerning the exploration are possible. We present a first step
in this direction in Algorithm 2. The idea is to check for existence of the marking before pushing
it onto stack. That is, if there already exists a max-cell capable of producing this marking, it is
either already on the stack or it has already been explored. This avoids the creation and inclusion
checking of the, possibly many, maximal conclists that are fireable from the marking.

Algorithm 2 Improved Petri Net to MHDA

Require: Input: Petri net pn
Require: Output: Corresponding max HDA
mhda <+ empty_mhda()
\* Stack of markings to visit
stack < [pn.init_mark]
while stack do
nm < stack.pop()
\* Generate all maximal concurrent steps from the current marking
all_MCS = gen_max_conc_step(pn,nm)
for aMCSeall_MCS do \* Exploring them
\* Check if it is a subcells of or equal to a currently existing max cell
if Imcemhda.maz_cells(): (nm,aMCS)C (me.m,mec.c) then
continue
\* We have found a new max cell
nc=mhda.add_cell(nm,aMC'S)
\* Check if the new cell subsumes existing ones
for sce mhda.max_cells(): (sc.m,sc.c) C (nc.m,nc.c) do
mhda.delete_cells(sc)

\* Iterate over all possible concurrent steps
for cs€2¢MC3 do
\* Compute marking of the corner
mo=nc.mi+fire(cs)
\* Verify that it is not already pushed or explored
if Is¢ stack: co=sAPmemhda.maz_cells():
m#ncA(me,{}) C(m.m,m.c) then
stack.push(co)

Note that, despite looking like a special case, (m,{}) C (m’/,¢’) and (m,c) C (m/,c’) are the
same. For computation, the later is reduced to (m,{})C (m/,c" =c'\c).

Due to timing constraints this version of the algorithm could not be tested properly for this
work, but it will be available soon at https://gitlabev.imtbs-tsp.eu/philipp.schlehuber-caissier /pn2hda/-
/tree/sub/msr25.
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