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Higher-Dimensional Automata on Infinite Pomsets

1 Introduction

Automata theory is fundamental for modeling and analyzing computational systems, playing a crucial
role in verifying system correctness, inferring models for unknown systems, synthesizing components
from specifications, and developing decision procedures. Finite automata over words, also known as
Kleene automata, model terminating sequential systems with finite memory, where accepted words
represent execution sequences. Their theory, supported by the Kleene, Büchi, and Myhill-Nerode
theorems, connects regular expressions, monadic second-order logic, and semigroups.

For concurrent systems, executions are often represented as pomsets (partially ordered multi-
sets) [35] instead of words. In a pomset, concurrent events are represented as labeled elements with
no specific order relative to each other. Various classes of pomsets and their corresponding automata
models exist, reflecting different interpretations of concurrency. Examples include branching au-
tomata and series-parallel pomsets [27–30], step transition systems and local trace languages [19],
communicating finite-state machines and message sequence charts [23], asynchronous automata and
Mazurkiewicz traces [41], and higher-dimensional automata (HDAs) with interval pomsets [14].

HDAs [36,38] are general models of concurrency that extend traditional models like event struc-
tures and safe Petri nets [3,39], asynchronous transition systems [5,40], and Kleene automata. HDAs
have gained significant attention in concurrency theory, offering an automata-like formalism that
precisely captures non-interleaving concurrency. Initially explored through geometric and categori-
cal approaches, the study of HDAs has shifted toward language theory, particularly since [14]. Key
theoretical results include a Kleene theorem [15], a Myhill-Nerode theorem [18], and a Büchi theo-
rem [2]. Higher-dimensional timed automata were introduced in [13], with their associated languages
studied in [1]. These results demonstrate the robustness of the theory and establish a strong foun-
dation for future developments, as seen in the (i)Po(m)set Project1.

HDAs consist of a collection of cells representing concurrently running events, connected by face
maps that model the start and termination of events. The language of an HDA is defined as a set
of interval pomsets [21] with interfaces (interval ipomsets or iipomsets) [16]. Each event in an HDA
execution P corresponds to a time interval of process activity, and the execution is constructed by
joining elementary steps that represent segments of P . This gluing composition allows events to
span across segments, linking one part to the next. Since any order extension of P remains a valid
execution, HDA languages are inherently closed under subsumption, meaning that every possible
interleaving of an execution is accepted. This property supports partial-order reduction and can
improve state-space exploration when modeling systems with HDAs.

One of the strengths of HDAs is their suitability for providing operational semantics to models
of concurrent systems. They offer a general framework for concurrency, extending well-established
models such as event structures, safe Petri nets [39], asynchronous transition systems [5, 40], and
Kleene automata. Among these frameworks, Petri nets stand out as one of the most established
models for concurrency. They capture various concurrency semantics through a built-in notion of
resources (tokens) and are widely used in both academia and industry due to their intuitive graphical
representation combined with high expressiveness. In [3], HDA and their generalizations are shown
to provide an operational semantics for Petri nets and many of their extensions, including inhibitor,
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transfer arcs or generalized self-modifying net. These translations have been implemented in the
prototype tool pn2hda2. For example, Fig. 1 illustrates Petri net and HDA models for a system with
two events, labeled a and b, with the left side showing their interleaving execution (a.b or b.a) and
the right side showing their concurrent execution (a ∥ b), with a continuous path through the surface
of a square.
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Figure 1: Petri net and HDA models distinguishing interleaving (left) from non-interleaving (right)
concurrency. Left: models for a.b + b.a; right: models for a ∥ b.

2 Research Objectives

To study non-terminating sequential machines and decision-related problems, Müller [33] and Büchi
[6] defined automata that recognize words indexed by all natural numbers, known as ω-words. Mc-
Naughton [31] later proved the equivalence of these definitions and extended Kleene’s theorem to
ω-words using a non-nested ω-iteration. These automata have logical [6] and algebraic [7] character-
izations, and, beyond their theoretical significance, they play a key role in specifying and verifying
reactive systems [11]. This led to the extension of automata models for concurrency to the infinite
case, with key results extending to ω-branching automata that admit Kleene-like and Büchi-like
theorems [26]. Similar developments also apply to traces [9, 12, 22], resulting in decision procedures
as corollaries. However, these extensions have not found widespread success in model checking due
to the inherent complexity of the verification process, which becomes significantly more challenging
when dealing with concurrency.

The goal of this thesis is to extend the theory of ω-HDAs (Higher-Dimensional Automata) to
better model non-terminating concurrent systems. A theory of ω-HDAs could provide a suitable
framework for modeling non-terminating concurrent systems with dependence and independence
relations. In particular it could mitigate the issue of state-space explosion by considering executions
as ω-ipomsets rather than treating all interleavings separately. For example, an infinite execution
where event a must precede b is modeled as the subsumption closure of the pomset with a < b and
all other events occurring in parallel, instead of considering all interleavings separately.

Previous work [34] has laid the groundwork for ω-HDA theory by defining these automata in terms
of ω-interval pomsets with interfaces, and by extending fundamental concepts to the infinite case.
They demonstrated that isomorphisms of ω-ipomsets are unique and admit canonical decompositions.
The study of HDAs with Muller and Büchi acceptance conditions revealed key differences from
classical theory:

1. Unlike the finite case, languages of ω-HDAs are not closed under order extension (subsumption).
2. Muller acceptance is more expressive than Büchi acceptance, even in the non-deterministic

case.
These differences led to adaptations of the original rational operations and the introduction of a non-
nested ω-iteration to define ω-rational languages. However, not all ω-rational languages are (Muller)
ω-regular.

Thus, significant open questions remain, especially in identifying classes of languages where the
different definitions coincide. Exploring different types of acceptance conditions inspired by standard
ω-automata or using variants of HDAs [10,17] may address some of these challenges.

We also plan to consider parity acceptance conditions and parity games, given the important
role they play in standard automata theory. Translations from LTL to parity automata and the use
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of parity games for synthesis are now standard applications of formal methods [25, 37], and we will
explore these venues for ω-HDAs.

Recent developments have established formal connections between HDAs and logical frame-
works [2, 8], laying the groundwork for verification techniques that take advantage of their non-
interleaving structure. Extending these connections to ω-HDAs, and exploring new ones, would
significantly enhance model checking for non-terminating concurrent systems. Another important
direction is infinite parallelism, as utilized in concurrent Kleene algebra [24] or the π-calculus [32].
Preliminary results in this area are presented in [4], and we aim to explore translations from Petri
nets, especially unbounded ones, as well as concepts related to well-structured systems [20].
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