Thesis Proposal:
Learning Models for Concurrency

1 Introduction

Verification as a field encompasses various techniques such as model checking that ensure a system
meets a given specification. The former are often represented by abstract machines, and the latter,
by temporal logic formulae. Manually modeling a system is a complex and error-prone task. More-
over, the resulting models are often difficult to maintain, especially for cyber-physical systems with
restricted or heterogeneous components. This challenge motivates automatic generation of formal
models, a key step of model checking being the identification of a suitable automaton for verification.

1.1 Formal learning

This is where automata learning comes into play, in order to automatically infer a structured repre-
sentation of a system’s behavior. It follows two main paradigms: active learning, where the learner
interacts with a black-box system through queries, and passive learning, which infers a model from
a dataset without direct interaction. Starting from the pioneering works on active learning by An-
gluin |4] and on passive learning by Gold and Biermann [6,|15,(16], both approaches have been
extensively studied for sequential models. This has led to the development of numerous learning
algorithms for automata-based models, including deterministic finite automata (DFA) and Mealy
machines [17},/18,21}24], visibly pushdown automata (VPA) [19], timed automata [28] and weighted
automata [27].

While learning has been effective for inferring automata that model sequential programs, there
is a lack of learnable models suitable for concurrent programs. These programs require models
that can effectively represent parallel behaviors and partial orders of events. To address this, vari-
ous concurrency-aware models have been explored, including Higher-Dimensional Automata (HDA),
communicating automata, asynchronous automata, pomset automata and trace models. However,
existing approaches to learning concurrent models are scarce.

1.2 Higher-Dimensional Automata

In recent years, HDAs have emerged as a prominent research topic in concurrency theory, offering
an automata-like formalism that captures non-interleaving concurrency with precision. Initially ex-
plored through geometrical and categorical approaches, the study of HDA has increasingly focused
on language theory, particularly since [10]. Key theoretical results include a Kleene theorem [11],
a Myhill-Nerode theorem [13], and a Biichi theorem [2]. Higher-dimensional timed automata were
introduced in 9], their associated languages being examined in [1]. These results demonstrate the ro-
bustness of the theory, establishing a strong foundation for further developments, see the (i)Po(m)set
Projectﬂ

An HDA consists of a collection of cells where events occur concurrently, structured by face maps
that define their initiation and termination. Its language is expressed as a set of interval pomsets [14]
with interfaces (interval ipomsets or iipomsets) [12]. Each event within an execution P of an HDA
corresponds to a time interval of process activity, and executions are constructed by composing
elementary steps — segments of P — that seamlessly connect to form a coherent process. This
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composition mechanism allows events to persist across segments, ensuring continuity. Moreover,
since any order extension of P remains a valid execution, HDAs languages are inherently closed
under subsumption, meaning that every possible interleaving of an execution is accepted, facilitating
partial-order reduction and potentially improving state-space exploration when modeling a system
with HDAs.

One of the strengths of HDAs is their suitability for providing operational semantics to models
of concurrent systems. They offer a general framework for concurrency, extending well-established
models such as event structures, safe Petri nets [25], asynchronous transition systems [5,29], and
Kleene automata. Among these frameworks, Petri nets stand out as one of the most established
models for concurrency. They capture various concurrency semantics through a built-in notion of
resources (tokens) and are widely used in both academia and industry due to their intuitive graphical
representation combined with high expressiveness. In [3], HDA and their generalizations are shown
to provide an operational semantics for Petri nets and many of their extensions, including inhibitor,
transfer arcs or generalized self-modifying net. These translations have been implemented in the
prototype tool pn2hdaﬂ

For illustration, Fig. [I] compares Petri net and HDA representations of a system with two events,
labeled a and b. On the left, both models capture the (mutually exclusive) interleaving of a and b,
allowing only the sequential executions a.b or b.a. On the right, they depict concurrent execution,
where a || b forms a continuous path that traverses the surface of the filled-in square from the initial
to the final node. The shape of this path encodes an interval-based scheduling of a and b, reflecting
their overlapping durations.

Figure 1: Petri net and HDA models distinguishing interleaving (left) from non-interleaving (right)
concurrency. Left: models for a.b + b.a; right: models for a || b.

Another emerging application of HDA is their connection to logic and model checking. Recent
developments have established formal links between HDAs and logical frameworks [2,8], providing
a foundation for verification techniques that leverage their non-interleaving structure. In particular,
w-HDAs, which accept infinite pomsets with interfaces, have laid the groundwork for reasoning
about infinite behaviors [22]. These advances open new possibilities for model checking in higher-
dimensional concurrency.

2 Objectives of the thesis

The objective of this thesis is to develop efficient learning algorithms for concurrent systems, with
a primary focus on HDAs and their generalizations, while also exploring other concurrency models.
Our main objective is to extend automata-learning techniques to concurrency-expressing structures,
capturing key aspects such as causality, concurrency, and non-interleaving behaviors. A particular
focus will be placed on designing learning algorithms for series-parallel pomsets, interval pomsets,
and other concurrency models capable of describing a broad range of systems.

2.1 Learnability of HDA

While automata learning has been extensively studied for sequential models, its application to con-
currency remains largely unexplored. Existing approaches remain limited: 7] introduces an algorithm
for inferring communicating automata from message sequence charts, though its complexity limits
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practical applicability. [26] is the first article to study learning for pomsets, focusing on a restricted
class of tree automata recognizing series-parallel pomsets. [23] iterates upon this work by extend-
ing optimized learning techniques developed for sequential traces to series-parallel pomsets. More
recently, [20] proposed two active learning algorithms for sound deterministic negotiations.

A key motivation for studying HDAs in this context is their connection to core active learn-
ing principles. The Myhill-Nerode theorem, which plays a central role in automata learning, has
been established for HDAs [13], suggesting that similar techniques can be adapted to this setting.
Additionally, HDAs have gained increasing attention in concurrency theory, with ongoing research
exploring both their structural properties and practical applications. HDAs provide a flexible and
expressive framework, enabling precise reasoning about concurrency while allowing for meaningful
comparisons between different models and their extensions. Their structure makes them well-suited
for developing learning algorithms, as well as for studying the theoretical properties that influence
learnability.

Beyond algorithmic developments, this project will also explore fundamental properties of HDAs,
their variants, and other concurrency models to better understand their learnability. Investigating
structural characteristics — such as regularity notions, factorization properties, or minimization
techniques — will help clarify the feasibility and complexity of inference techniques in these settings.
Establishing a solid theoretical foundation is crucial for ensuring that the learning algorithms we
develop are both efficient and broadly applicable.

2.2 Practical applications

We will focus on learning algorithms applicable to a wide variety of concurrency models, ensuring that
the developed techniques can generalize across different system classes. This work also contributes
to model inference for verification, making learned models usable for model-checking purposes. By
adapting inference methods to concurrency settings, we aim to provide tools that facilitate the
automated analysis of concurrent systems.

We also plan to investigate applications in network protocol verification and distributed sys-
tems. These systems are often complex, with specifications — such as RFCs — that may contain
ambiguities, whether intentional or not. In this context, HDAs provide a compact and natural rep-
resentation of concurrency, where an n-dimensional cell encodes n! different sequential executions.
This representation opens up new possibilities for inference techniques that scale to realistic system
models.

To ensure practical impact, the learning algorithms developed in this project will be implemented
within a dedicated library, designed to interface with existing frameworks such as LearnLib. This
integration will allow us to leverage established learning techniques while extending their applicability
to concurrency models, making our contributions both theoretically grounded and directly usable in
practice.

3 Supervision

This thesis will be conducted at Laboratoire de Recherche de I’EPITA (LRE) under the supervision
of Amazigh Amrane and Adrien Pommellet.
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