The rabbit calculus:
 convolution products on double categories and categorification of rule algebra

Paul-André Melliès
with Nicolas Behr (IRIF) and Noam Zeilberger (LIX)

Institut de Recherche en Informatique Fondamentale (IRIF) CNRS \& Université Paris Cité \& INRIA
[i]Po[m]set Project Online Seminar
PPOM t Friday 15 March 2024

Probability generating functions

Key idea: given a chemical reaction described as a transition

$$
\kappa_{i, o}: \quad i X \longrightarrow o X
$$

where
$\triangleright \quad i \in \mathbb{N}$ denotes the number of particles X entering the transition
$\triangleright \quad o \in \mathbb{N}$ denotes the number of particles X exiting the transition
$\triangleright \quad \kappa_{i, o} \in \mathbb{R}_{>0}$ denotes the base rate of the transition
the dynamics may be encoded using a probability generating function

$$
P(t ; x)=\sum_{n \geq 0} p_{n}(t) x^{n}
$$

where the scalar

$$
p_{n}(t) \geq 0
$$

is the probability at time t that the system is in a state with n particles.

Probability generating functions

Delbruck's formulation of the evolution of the system

$$
\frac{\partial}{\partial t} P(t ; x)=\mathcal{H} P(t ; x)
$$

with initial distribution

$$
P(0 ; x)=P_{0}(x)
$$

and evolution operator:

$$
\mathcal{H}=\sum_{i, 0} \kappa_{i, 0}\left(\hat{x}^{0}-\hat{x}^{i}\right)\left(\frac{\partial}{\partial x}\right)^{i}
$$

which can be related to stochastic rewriting theory (cf. Nicolas Behr).

The quest for causality in rewriting theory

An important insight coming from Huet and Lévy:
In order to track the causality structure relating different β-redexes, one needs to consider rewriting paths modulo permutations of the form

Illustration

Consider the term rewriting system on the signature with two letters:

$$
\text { a binary letter } m: 2 \quad \text { a constant letter } e: 0
$$

together with the unique rewrite rule

$$
r: m(e, x) \longrightarrow x
$$

which we depict as follows:

Illustration

The term

admits exactly two redexes

$$
m(e, m(e, e)) \longleftarrow \text { red } m(m(e, e), m(e, e)) \xrightarrow{\text { blue }} m(m(e, e), e)
$$

which are independent and can be computed in parallel.

Illustration

The term

admits exactly two redexes

$$
m(e, m(e, e)) \longleftarrow \text { red } m(m(e, e), m(e, e)) \xrightarrow{\text { blue }} m(m(e, e), e)
$$

which are independent and can be computed in parallel.

Illustration

One obtains a local confluence or permutation diagram

expressing that the blue redex and the red redex are independent.

Independence and permutation

Illustration

At the same time, rewriting the redex

$$
m(m(e, e), m(e, e)) \xrightarrow{\text { red }} m(e, m(e, e))
$$

in the same term

Illustration

rewrites to the term

which admits the redex

$$
m(e, m(e, e)) \xrightarrow{\text { green }} m(e, e)
$$

Illustration

rewrites to the term

which admits the redex

$$
m(e, m(e, e)) \xrightarrow{\text { green }} m(e, e)
$$

Illustration

Here, the red redex creates the green redex

because the green redex cannot be permuted before the red redex.

Creation

Composing redexes in term rewriting

Composing redexes in term rewriting

The term

admits one composite redex obtained by composing red and green.

$$
m(m(e, e), m(e, e)) \xrightarrow{\text { red }} m(e, m(e, e)) \xrightarrow{\text { green }} m(e, e)
$$

Composing redexes in term rewriting

The term

admits one composite redex obtained by composing red and green.

$$
m(m(e, e), m(e, e)) \xrightarrow{\text { red }} m(e, m(e, e)) \xrightarrow{\text { green }} m(e, e)
$$

The quest for causality in rewriting theory

In the λ-calculus and term rewriting systems
A well-established tradition based on optimality and residual theory
\triangleright the notion of Lévy families in the λ-calculus (Lévy 1980)
\triangleright their generalisation to any CRS (Asperti, Laneve 1995)
\triangleright a residual theory based on the notion of trek (PAM, 2002)
More recently, in categorical graph rewriting
\triangleright the notion of tracelet emerging in the work by Nicolas Behr.

Our ambition in this work is to initiate a convergence between these lines by revisiting/categorifying the work on tracelets using double categories.

Double categories

A convenient framework for term and graph rewriting

Double categories

Definition. A (weak) double category \mathbb{D} consists of
\triangleright a category \mathbb{D}_{0} of objects,
\triangleright a category \mathbb{D}_{1} of horizontal maps,
\triangleright a pair of source and target functors

$$
\mathbb{D}_{0} \stackrel{T}{\longleftarrow} \mathbb{D}_{1} \xrightarrow{S} \mathbb{D}_{0}
$$

\triangleright a horizontal composition functor

$$
\diamond_{h}: \mathbb{D}_{1} \times_{\mathbb{D}_{0}} \mathbb{D}_{1} \longrightarrow \mathbb{D}_{1}
$$

- a horizontal identity functor

$$
\text { idh }: \mathbb{D}_{0} \longrightarrow \mathbb{D}_{1}
$$

satisfying a number of associativity and neutrality properties.

The category \mathbb{D}_{0} of vertical maps

A morphism in the category \mathbb{D}_{0} is represented as a vertical map

which may be composed vertically with other vertical maps.

The category \mathbb{D}_{1} of horizontal maps

An object in the category \mathbb{D}_{1} is represented as a horizontal map

$$
B \stackrel{r}{\longleftarrow} A
$$

A morphism in the category \mathbb{D}_{1} is represented as a double cell

which may be composed vertically with other double cells.

The category \mathbb{D}_{1} of horizontal maps

We often find convenient to use the pictorial notation

for the double cell usually noted

The category \mathbb{D}_{2} of paths of length 2

Every double category \mathbb{D} comes with a category $\mathbb{D}_{2}=\mathbb{D}_{1} \times_{\mathbb{D}_{0}} \mathbb{D}_{1}$ of horizontal paths of length 2
defined as the limit of the diagram of functors

in the category Cat of categories and functors.

The category \mathbb{D}_{2} of paths of length 2

A typical morphism of \mathbb{D}_{2} has the shape

which we also like to depict as

The category \mathbb{D}_{3} of paths of length 3

Every double category \mathbb{D} comes with
a category \mathbb{D}_{3} of horizontal paths of length 3
defined as the limit of the diagram of functors

in the category Cat of categories and functors.

The category \mathbb{D}_{3} of paths of length 3

A typical morphism of \mathbb{D}_{3} has the shape

which we also like to depict as

The category \mathbb{D}_{4} of paths of length 4

Every double category \mathbb{D} comes with
a category \mathbb{D}_{4} of horizontal paths of length 4
defined as the limit of the diagram of functors

in the category Cat of categories and functors.

The category \mathbb{D}_{4} of paths of length 4

A typical morphism of \mathbb{D}_{4} has the shape

which we also like to depict as

Unbiased presentation of a double category

Every double category \mathbb{D} comes equipped with a family of functors

$$
h_{n}: \mathbb{D}_{n} \longrightarrow \mathbb{D}_{1}
$$

called the horizontal composition functors, and satisfying a number of associativity and neutrality properties.

This leads to an alternative (unbiased) definition of (weak) double category.
Note that the functors h_{2} and h_{0} coincide with the functors \diamond_{h} and $i d h$

$$
\begin{array}{lll}
h_{2}=\diamond h & : & \mathbb{D}_{2} \longrightarrow \mathbb{D}_{1} \\
h_{0}=i d h & : & \mathbb{D}_{0} \longrightarrow \mathbb{D}_{1}
\end{array}
$$

The double category DPO of double pushouts

The double category $\mathbb{D}=$ DPO on an adhesive category G
\triangleright whose objects are objects A, B, C of the adhesive category \mathbf{G},
\triangleright whose horizontal maps $M=(S, s, t)$ are spans in G,
$\triangleright \quad$ whose vertical maps $\lambda_{A}: A \rightarrow A^{\prime}$ are monos in G,
$\triangleright \quad$ whose double cells $\theta: M \Rightarrow M^{\prime}$ are monos $\lambda_{\theta}: S \rightarrow S^{\prime}$ making the pushout diagram commute:

The double category LTRS of linear term rewriting

The double category $\mathbb{D}=$ LTRS on a first-order signature
is defined as follows:

$$
\Sigma=\coprod_{n \in \mathbb{N}} \Sigma_{n}
$$

$\triangleright \quad$ its objects are sequences of closed linear λ-terms

$$
t_{1}: A_{1} \otimes \ldots \otimes t_{n}: A_{n}
$$

whose types are generated by the grammar

$$
A, B \quad:=\quad \circ \mid A \multimap B
$$

extended with the rule for each letter $a \in \Sigma_{n}$ of the signature:
Constant

$$
\vdash \quad a: \oplus \multimap \cdots \multimap \odot \multimap \mathbb{O}
$$

The double category LTRS of linear term rewriting

$\triangleright \quad$ its vertical maps

$$
u_{1}: A_{1} \otimes \ldots \otimes u_{p}: A_{p} \xrightarrow{f_{1} \otimes \ldots \otimes f_{q}} v_{1}: B_{1} \otimes \ldots \otimes v_{q}: B_{q}
$$

are sequences of linear λ-terms

$$
\Gamma_{1} \vdash f_{1}: B_{1} \quad \ldots \quad \Gamma_{q} \vdash f_{q}: B_{q}
$$

separating the context linearly

$$
A_{1}, \ldots, A_{p} \cong \Gamma_{1}, \ldots, \Gamma_{q}
$$

and satisfying the series of expected equations

$$
v_{1}=f_{1}\left[u_{1}, \ldots, u_{p}\right] \quad \ldots \quad v_{q}=f_{q}\left[u_{1}, \ldots, u_{p}\right]
$$

The double category LTRS of linear term rewriting

$\triangleright \quad$ whose double cell are of the form

where the horizontal morphism

$$
t_{1} \otimes \ldots \otimes t_{p} \longrightarrow u_{1} \otimes \ldots \otimes u_{p}
$$

is a pair of sequences of closed linear λ-terms with same types.

Rewriting rules as covariant presheaves

Key idea : every rewriting rule seen as a horizontal map in \mathbb{D}

$$
r: A \longrightarrow B
$$

induces a representable presheaf

$$
\hat{\Delta}_{r}: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

which associates to every horizontal map

$$
u: A^{\prime} \longrightarrow B^{\prime}
$$

the set $\mathbb{D}_{1}(r, u)$ of double cells

which implement the transformation u as an instance of the rule r.

Illustration

The rewrite rule

$$
r: m(e, x) \longrightarrow x
$$

implements the red redex using the double cell:

Illustration

The rewrite rule

$$
r: m(e, x) \longrightarrow x
$$

implements the blue redex using the double cell:

Illustration

The rewrite rule

$$
r: m(e, x) \longrightarrow x
$$

implements the green redex using the double cell:

Goal: composing rules using convolution

Category of elements of a presheaf

The Grothendieck construction

Elements of a covariant presheaf

Recall that an element

$$
(a, x) \in \operatorname{Elts}(F)
$$

of a covariant presheaf

$$
F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

is defined as a pair

$$
(a \in \mathbf{C} \quad, \quad x \in F(a))
$$

consisting of
$\triangleright \quad$ an object a of the underlying category C,
$\triangleright \quad$ an element x of the set $F(a)$.

Elements of a covariant presheaf

We find enlightening to draw such a pair

$$
(a \in \mathbf{C} \quad, \quad x \in F(a)) \in \operatorname{Elts}(F)
$$

in the following way

with the intuition that the element

$$
x \in F(a)
$$

provides a witness of the covariant presheaf F at instance $a \in \mathbf{C}$.

Covariant action of a presheaf

By definition of a covariant presheaf

$$
F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

every element

$$
(a \in \mathbf{C}, x \in F(a)) \in \operatorname{Elts}(F)
$$

and morphism of the category C

$$
\gamma: a \longrightarrow a^{\prime}
$$

induces an element

$$
\left(a^{\prime} \in \mathbf{C} \quad, \quad \gamma \cdot x=F(\gamma)(x) \in F\left(a^{\prime}\right) \quad\right) \in \operatorname{Elts}(F)
$$

Covariant action of a presheaf

This means that every diagram

can be completed into the diagram

The category of elements

The category Elts (F) of elements of a covariant presheaf

$$
F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

is defined in the following way:
$\triangleright \quad$ its objects are the elements (a, x) of the covariant presheaf F
\triangleright its morphisms

$$
(f, x):(a, x) \longrightarrow\left(a^{\prime}, x^{\prime}\right)
$$

are the pairs consisting of a morphism

$$
f: a \longrightarrow a^{\prime}
$$

of the category C and an element $x \in F(a)$ such that

$$
f \cdot x=F(f)(x)=x^{\prime}
$$

The category of elements

The category of elements

> Elts (F)
associated to a covariant presheaf

$$
F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

comes equipped with a projection functor

$$
\pi_{F} \quad: \quad \operatorname{Elts}(F) \longrightarrow \mathbf{C}
$$

which transports every element

$$
(a, x) \in \operatorname{Elts}(F)
$$

to the object $a \in \mathbf{C}$ of the underlying category \mathbf{C}.
Fact. The functor π_{F} defines a discrete opfibration.

Grothendieck opfibrations

Definition. A functor

$$
p: \mathrm{E} \longrightarrow \mathrm{C}
$$

is an opfibration when there exists an opcartesian morphism

for every object $R \in p^{-1}(A)$ and every morphism $u: A \rightarrow B$.

Opcartesian morphisms

A morphism $f: R \rightarrow S$ in E is opcartesian above $u: A \rightarrow B$ in C when the following property holds:
for every map $g: R \rightarrow T$
for every map $v: B \rightarrow C$ such that $p(g)=v \circ u$
there exists
a unique map $h: S \rightarrow T$
such that $h \circ f=g$
and $p(h)=v$.

The Grothendieck correspondence

The projection functor

$$
\pi_{F} \quad: \quad \text { Elts }(F) \longrightarrow \mathrm{C}
$$

is a discrete opfibration. Indeed, every diagram

can be completed with the opcartesian morphism (f, x) as follows:

The Grothendieck correspondence

Moreover, every natural transformation

induces a commutative diagram of discrete opfibrations:

The Grothendieck correspondence

Fact. This induces a categorical equivalence between
\triangleright The category [C, Ens] of covariant presheaves

$$
F, G \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

and natural transformations between them.
\triangleright The slice category DiscOpFib/C of discrete opfibrations above C.
Moreover, there is an adjunction

The Day convolution product

A construction on monoidal categories

The Day convolution product

Given two covariant presheaves

$$
F, G \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

on a monoidal category C with tensor product

$$
\otimes: \quad \mathrm{C} \times \mathrm{C} \longrightarrow \mathrm{C}
$$

the Day convolution product of F and G is the covariant presheaf

$$
G \hat{\otimes} F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

defined by the coend formula

$$
G \hat{\otimes} F=c \mapsto \int^{(b, a) \in \mathbf{C} \times \mathbf{C}} \mathbf{C}(b \otimes a, c) \times G(b) \times F(a)
$$

The Day convolution product

Equivalently, the convolution product

$$
G \hat{\otimes} F \quad: \quad \mathrm{C} \longrightarrow \text { Set }
$$

may be defined as the left Kan extension of the functor

$$
\mathrm{C} \times \mathrm{C} \xrightarrow{\mathrm{G} \times F} \text { Set } \times \text { Set } \xrightarrow{\times} \text { Set }
$$

along the tensor product functor:

What does the coend formula mean?

An element of the coend

$$
G \hat{\otimes} F(c)=\int^{(b, a) \in \mathbf{C} \times \mathbf{C}} \mathbf{C}(b \otimes a, c) \times G(b) \times F(a)
$$

consists of a morphism

$$
b \otimes a \xrightarrow{\gamma} c
$$

together with a pair of elements

$$
y \in G(b) \quad x \in F(a)
$$

considered modulo an equivalence relation \sim.

What does the coend formula mean?

As we did before, we find enlightening to draw the two elements

$$
y \in G(b) \quad x \in F(a)
$$

in the following way:

What does the coend formula mean?

Accordingly, we like to draw the triple

$$
(\quad b \otimes a \xrightarrow{\gamma} c \quad, \quad x \in F(a) \quad, \quad y \in G(b) \quad)
$$

in the following way:

What does the coend formula mean?

Suppose given a pair of elements

$$
x \in F(a) \quad y \in G(b)
$$

a pair of morphisms

$$
\alpha: a \longrightarrow a^{\prime} \quad \beta: b \longrightarrow b^{\prime}
$$

and a morphism

$$
\gamma: a^{\prime} \otimes b^{\prime} \longrightarrow c
$$

What does the coend formula mean?

The situation may be depicted as follows:

What does the coend formula mean?

The diagram may be completed as follows:

What does the coend formula mean?

This equivalence relation \sim defined by the coend

$$
G \hat{\otimes} F(c)=\int^{(b, a) \in \mathbf{C} \times \mathbf{C}} \mathbf{C}(b \otimes a, c) \times G(b) \times F(a)
$$

identifies every triple of the form

$$
\left(\quad b \otimes a \xrightarrow{\beta \otimes a} b^{\prime} \otimes a^{\prime} \xrightarrow{\gamma} c \quad, \quad x \in F(a) \quad, \quad y \in G(b) \quad\right)
$$

with the corresponding triple

$$
\left(b^{\prime} \otimes a^{\prime} \xrightarrow{\gamma} c \quad, \quad \alpha \cdot x \in F\left(a^{\prime}\right) \quad, \quad \beta \cdot y \in G\left(b^{\prime}\right)\right)
$$

What does the coend formula mean?

Diagrammatically, the equivalence relation \sim identifies the two triples:

The Day convolution product

Theorem [Day 1970] The convolution product

$$
G, F \quad \mapsto \quad G \hat{\otimes} F
$$

on a monoidal category C with tensor product \otimes defines a functor

$$
\hat{\otimes} \quad: \quad[\mathrm{C}, \text { Set }] \times[\mathrm{C}, \text { Set }] \longrightarrow[\mathrm{C}, \text { Set }]
$$

which equips the category of covariant presheaves
[C, Set]
with the structure of a monoidal closed category.
In particular, the convolution product is associative:

$$
H \hat{\otimes}(G \hat{\otimes} F) \cong(H \hat{\otimes} G) \hat{\otimes} F
$$

Construction of the free discrete opfibration

Step 0. We start from the functor

$$
\text { Elts }(G) \times \text { Elts }(F) \xrightarrow{\pi_{G} \times \pi_{F}} \mathbf{C} \times \mathbf{C} \xrightarrow{\otimes} \mathbf{C}
$$

whose objects in the source category are pairs

$$
(x \in F(a) \quad, \quad y \in G(b) \quad)
$$

may be depicted in the following way:

Construction of the free discrete opfibration

Step 1. We replace the functor by its free split opfibration

$$
\text { Elts }(G, F) \longrightarrow C
$$

where the source category Elts (G, F) has objects defined as triples

$$
(\quad b \otimes a \xrightarrow{\gamma} c \quad, \quad x \in F(a) \quad, \quad y \in G(b))
$$

which may be depicted in the following way:

Construction of the free discrete opfibration

Step 1. We replace the functor by its free split opfibration

whose morphisms in each fiber above $c \in \mathbf{C}$ are of the form:

Construction of the free discrete opfibration

Step 2. Replace each fiber category of the opfibration

by its set of connected components, using the equivalence relation:

A key observation

From this follows that there exists a cofinal functor

$$
\text { Elts }(G) \times \operatorname{Elts}(F) \longrightarrow \text { Elts }(G \hat{\otimes} F)
$$

making the diagram commute:

in the category Cat of categories and functors.

A key observation

The category Cat/C inherits a tensor product

$$
\tilde{\otimes} \quad: \quad \mathrm{Cat} / \mathrm{C} \times \mathrm{Cat} / \mathrm{C} \longrightarrow \mathrm{Cat} / \mathrm{C}
$$

from the monoidal structure of the category C .
The Day tensor product
$\hat{\otimes}:$ DiscOpFib/C \times DiscOpFib/C \longrightarrow DiscOpFib/C
is the monoidal structure obtained by transporting $\tilde{\otimes}$ along the adjunction

Construction of the free discrete opfibration

Step 0. We start from the functor

$$
\text { Elts }(G) \times \text { Elts }(F) \xrightarrow{\pi_{G} \times \pi_{F}} \mathbf{C} \times \mathbf{C} \xrightarrow{\otimes} \mathbf{C}
$$

whose objects in the source category are pairs

$$
(x \in F(a) \quad, \quad y \in G(b) \quad)
$$

may be depicted in the following way:

Construction of the free discrete opfibration

Step 1. We replace the functor by its free split opfibration

$$
\text { Elts }(G, F) \longrightarrow C
$$

where the source category Elts (G, F) has objects defined as triples

$$
(\quad b \otimes a \xrightarrow{\gamma} c \quad, \quad x \in F(a) \quad, \quad y \in G(b))
$$

which may be depicted in the following way:

Construction of the free discrete opfibration

Step 1. We replace the functor by its free split opfibration

whose morphisms in each fiber above $c \in \mathbf{C}$ are of the form:

Construction of the free discrete opfibration

Step 2. Replace each fiber category of the opfibration

by its set of connected components, using the equivalence relation:

A key observation

From this follows that there exists a cofinal functor

$$
\text { Elts }(G) \times \operatorname{Elts}(F) \longrightarrow \text { Elts }(G \hat{\otimes} F)
$$

making the diagram commute:

in the category Cat of categories and functors.

A key observation

The category Cat/C inherits a tensor product

$$
\tilde{\otimes} \quad: \quad \mathrm{Cat} / \mathrm{C} \times \mathrm{Cat} / \mathrm{C} \longrightarrow \mathrm{Cat} / \mathrm{C}
$$

from the monoidal structure of the category C .
The Day tensor product
$\hat{\otimes}:$ DiscOpFib/C \times DiscOpFib/C \longrightarrow DiscOpFib/C
is the monoidal structure obtained by transporting $\tilde{\otimes}$ along the adjunction

The convolution product on double categories

Extending the Day construction

The convolution product on double categories

Given two covariant presheaves

$$
F, G \quad: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

on a double category \mathbb{D} with horizontal composition

$$
\diamond_{h}: \quad \mathbb{D}_{2}=\mathbb{D}_{1} \times_{\mathbb{D}_{0}} \mathbb{D}_{1} \longrightarrow \mathbb{D}_{1}
$$

the convolution product of F and G is the covariant presheaf

$$
G * F \quad: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

defined by the coend formula:

$$
G * F=t \mapsto \int^{(s, r) \in \mathbb{D}_{2}} \mathbb{D}_{1}\left(s \diamond_{h} r, t\right) \times G(s) \times F(r)
$$

The convolution product

Equivalently, the convolution product

$$
G * F \quad: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

may be defined as the left Kan extension of the functor

$$
\mathbb{D}_{1} \times_{\mathbb{D}_{0}} \mathbb{D}_{1} \xrightarrow{\text { proj }} \mathbb{D}_{1} \times \mathbb{D}_{1} \xrightarrow{G \times F} \text { Set } \times \text { Set } \xrightarrow{\times} \text { Set }
$$

along the tensor product functor:

What does the coend formula mean?

An element of the coend

$$
G * F(t)=\int^{(s, r) \in \mathbb{D}_{2}} \mathbb{D}_{1}\left(s \diamond_{h} r, t\right) \times G(s) \times F(r)
$$

consists of a double cell of the form

together with a pair of elements

$$
y \in G(s) \quad x \in F(r)
$$

considered modulo an equivalence relation noted \sim.

What does the coend formula mean?

We find enlightening to draw the triple

$$
\left(s \diamond_{h} r \stackrel{\gamma}{\Longrightarrow} t \quad, \quad x \in F(r) \quad, \quad y \in G(s) \quad\right)
$$

in the following way:

What does the coend formula mean?

Suppose given a pair of elements

$$
x \in F(r) \quad y \in G(s)
$$

a pair of double cells

$$
\alpha: r \Longrightarrow r^{\prime} \quad \beta: s \Longrightarrow s^{\prime}
$$

and a double cell

$$
\gamma: s^{\prime} \diamond_{h} r^{\prime} \Longrightarrow t
$$

What does the coend formula mean?

The five components may be depicted as follows:

What does the coend formula mean?

The equivalence relation \sim defined by the coend

$$
G * F(t)=\int^{(s, r) \in \mathbb{D}_{2}} \mathbb{D}_{1}\left(s \diamond_{h} r, t\right) \times G(s) \times F(r)
$$

identifies every triple of the form

Key observation

Theorem [Behr, PAM, Zeilberger]

The convolution product

$$
G, F \quad \mapsto \quad G * F
$$

on a double category \mathbb{D} defines a functor

$$
\text { * : } \widehat{\mathbb{D}} \times \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{D}}
$$

which equips the category of covariant presheaves

$$
\widehat{\mathbb{D}}:=\left[\mathbb{D}_{1}, \text { Set }\right]
$$

with the structure of an oplax monoidal closed category.

What oplax monoidal means...

The category of covariant presheaves

$$
\widehat{\mathbb{D}}:=\left[\mathbb{D}_{1}, \text { Set }\right]
$$

comes equipped with a family of convolution products

$$
*_{n} \quad: \widehat{\mathbb{D}} \times \cdots \times \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{D}}
$$

where we use the notation

$$
\left(F_{n} * \cdots * F_{1}\right):=*_{n}\left(F_{n}, \ldots, F_{1}\right)
$$

for the n-ary product of n covariant presheaves

$$
F_{n}, \ldots, F_{1} \quad: \quad \mathbb{D}_{1} \longrightarrow \text { Set. }
$$

The ternary convolution product

Typically, the ternary convolution product

$$
H * G * F \quad: \quad \mathbf{C} \longrightarrow \text { Set }
$$

of three covariant presheaves H, G, F is defined by the coend formula

$$
H * G * F=u \mapsto \int^{(t, s, r) \in \mathbb{D}_{3}} \mathbb{D}_{1}\left(t \diamond_{h} s \diamond_{h} r, u\right) \times H(t) \times G(s) \times F(r)
$$

where \mathbb{D}_{3} is the category of horizontal paths of length 3.

The ternary convolution product

The elements of the ternary convolution product are quadruples

$$
\left(\diamond_{h} s \diamond_{h} r \xlongequal{\delta} u \quad, \quad x \in F(r) \quad, \quad y \in G(s) \quad, \quad z \in G(t)\right)
$$

which may be depicted in the following way:

The ternary convolution product

The elements of the convolution product

$$
\left(t \diamond_{h} s \diamond_{h} r \xlongequal{\delta} u \quad, \quad x \in F(r) \quad, \quad y \in G(s) \quad, \quad z \in G(t)\right)
$$

are identified modulo the equivalence relation:

What oplax monoidal means...

The convolution products are related by associativity maps such as

$$
H *(G * F) \stackrel{\text { assoc }}{\longleftrightarrow}(H * G * F) \xrightarrow{\text { assoc }}(H * G) * F
$$

which are not reversible in general, for the following reason:

What oplax monoidal means...

In a general double category \mathbb{D}, not every composite shape of the form

defining an element of the presheaf $H *(G * F)$ at instance $u: A \longrightarrow A^{\prime}$

What oplax monoidal means...

is equivalent modulo \sim in \mathbb{D} to a ternary shape of the form

defining an element of $H * G * F$ at the same instance $u: A \longrightarrow A^{\prime}$.

Cylindrical decomposition property

A sufficient condition to ensure strong associativity

Towards strong associativity

We want to find a sufficient condition on a double category

$$
\left(\mathbb{D}, h_{n}: \mathbb{D}_{n} \longrightarrow \mathbb{D}_{1}\right)
$$

ensuring that the associativity maps of the convolution product

$$
H *(G * F) \stackrel{\text { assoc }}{\longleftarrow}(H * G * F) \xrightarrow{\text { assoc }}(H * G) * F
$$

are reversible.

Towards strong associativity

In particular, this requires to show that every composite shape

defining an element of the presheaf $H *(G * F)$ at instance $u: A \longrightarrow A^{\prime}$

Towards strong associativity

is equivalent modulo \sim in \mathbb{D} to a ternary shape of the form

defining an element of $H * G * F$ at the same instance $u: A \longrightarrow A^{\prime}$.

Towards strong associativity

Suppose that every double cell of the form

factors in the following way:

Towards strong associativity

In that case, one can rewrite the original composite shape

Towards strong associativity

We then into the shape where the cell γ has been factored:

Towards strong associativity

then into the equivalent shape using the equivalence relation \sim

Towards strong associativity

then into the equal shape by vertical composition:

Towards strong associativity

and finally in the ternary shape we were looking for:

The cylinder categories

Every double category \mathbb{D} comes equipped with a family of categories

$$
\mathrm{Cyl}_{\mathbb{D}}[n]
$$

called cylinder categories and defined in the following way:
$\triangleright \quad$ the objects of $\mathrm{Cyl}_{\mathbb{D}}[n]$ are the tuples

$$
\sigma=\left(s_{n}, \ldots, s_{1}, s, \sigma: s_{n} \diamond_{h} \cdots \diamond_{h} s_{1} \Rightarrow s\right)
$$

defining a globular cell of the form

The cylinder categories

$\triangleright \quad$ given globular cells

$$
\begin{aligned}
\sigma & =\left(s_{n}, \ldots, s_{1}, s, \sigma: s_{n} \diamond_{h} \cdots \diamond_{h} s_{1} \Rightarrow s\right) \\
\tau & =\left(t_{n}, \ldots, t_{1}, t, \tau: t_{n} \diamond_{h} \cdots \diamond_{h} t_{1} \Rightarrow t\right)
\end{aligned}
$$

the morphisms of $\mathrm{Cyl}_{\mathbb{D}}[n]$ of the form

$$
\left(\varphi_{n}, \cdots, \varphi_{1}, \varphi\right) \quad: \quad \sigma \longrightarrow \tau
$$

are tuples consisting of a map in \mathbb{D}_{n}

$$
\left(\varphi_{n}, \ldots, \varphi_{1}\right): \quad\left(s_{n}, \ldots, s_{1}\right) \Rightarrow\left(t_{n}, \ldots, t_{1}\right)
$$

and of a double cell

$$
\varphi \quad: \quad s \Rightarrow t
$$

The cylinder categories

such that the double cell $\varphi \circ \sigma$ depicted below

The cylinder categories

is equal to the double cell $\tau \circ\left(\varphi_{n} \diamond_{h} \cdots \diamond_{h} \varphi_{1}\right)$ depicted below

The cylinder categories

Typically, a map of the cylinder category $\mathrm{Cyl}_{\mathbb{D}}$ [2] of the form

The cylinder categories

is defined as a tuple of double cells $\varphi, \varphi_{1}, \varphi_{2}$ of double cells of the form

The cylinder categories

satisfying the equation:

This justifies to see every $\mathrm{Cyl}_{\mathbb{D}}[n]$ as a cylinder category of \mathbb{D}.

The cylindrical decomposition property

Key observation: each composition functor

$$
h_{n}: \mathbb{D}_{n} \longrightarrow \mathbb{D}_{1}
$$

of the double category \mathbb{D} factors as

$$
\mathbb{D}_{n} \longrightarrow \mathrm{Cyl}_{\mathbb{D}}[n] \xrightarrow{\pi_{n}} \mathbb{D}_{1}
$$

Definition. A double category \mathbb{D} satisfies
the n-cylindrical decomposition property (n-CDP)
when the functor

$$
\mathrm{Cyl}_{\mathbb{D}}[n] \xrightarrow{\pi_{n}} \mathbb{D}_{1}
$$

is an opfibration (not necessarily discrete).

Main theorem

Theorem [Behr, PAM, Zeilberger in this FSCD]

Suppose that a double category \mathbb{D} satisfies
the n-cylindrical decomposition property (n-CDP)
for all $n \in \mathbb{N}$.
In that case, the convolution product defines a functor

$$
\text { * : } \widehat{\mathbb{D}} \times \widehat{\mathbb{D}} \longrightarrow \widehat{\mathbb{D}}
$$

which equips the category of covariant presheaves

$$
\widehat{\mathbb{D}}:=\left[\mathbb{D}_{1}, \text { Set }\right]
$$

with the structure of an strong monoidal closed category.

Main theorem

In particular, the associativity maps are reversible in that case:

$$
H *(G * F) \stackrel{\text { assoc }}{\longleftarrow}(H * G * F) \xrightarrow{\text { assoc }}(H * G) * F
$$

Reversibility comes from the cylindrical decomposition property of \mathbb{D}.

IIllustrations

The theorem applies to the following situations:
$\triangleright \quad$ every bicategory $\mathbb{D}=\mathcal{W}$ satisfies n-CDP,
$\triangleright \quad$ every framed bicategory $\mathbb{D}=\mathcal{W}$ satisfies n-CDP for $n \geq 1$,
$\triangleright \quad$ the double category $\mathbb{D}=$ DPO satisfies n-CDP for $n \geq 1$.
$\triangleright \quad$ the double category $\mathbb{D}=$ LTRS of term rewriting satisfies n-CDP.
More generally, the theorem enables us to use the convolution product for a number of categorical graph and term rewriting frameworks.

Categorifying rule algebras

Composing representable presheaves by convolution

Categorification of rule algebras

One main ingredient of rule algebras is the following equation

$$
\delta(r) \star \delta(s)=\sum_{\mu \in \mathcal{M}_{r}(s)} \delta\left(r_{\mu} s\right)
$$

where
$\triangleright \quad \mathcal{M}_{r}(s)$ is the set of admissible matches of rule r into rule s
$\triangleright \quad r_{\mu}$ denotes one possible way to get a composite rule from r and s.
Similarly, we want to find sufficient conditions on \mathbb{D} such that

$$
\hat{\Delta}_{r} * \hat{\Delta}_{s}=\sum_{\mu \in \mathcal{M}_{r}(s)} \hat{\Delta}_{r_{\mu} s}
$$

where the sum is now set-theoretic union.

Multi-sums

Suppose that A and B are objects in a category C .
Definition. A multi-sum of A and B is a family of cospans

$$
\left(A \xrightarrow{a_{i}} U_{i} \stackrel{b_{i}}{\longleftarrow} B\right)_{i \in I}
$$

such that for any cospan

$$
A \xrightarrow{f} X \stackrel{g}{\leftrightarrows} B
$$

there exists a unique $i \in I$ and a unique morphism

$$
[f, g]: \quad U_{i} \xrightarrow{f} X
$$

such that

$$
f=[f, g] \circ a_{i} \quad \text { and } \quad g=[f, g] \circ b_{i} .
$$

Categorification of rule algebras

Theorem. Assume \mathbb{D} is a small double category satisfying
$\triangleright \quad$ the vertical category \mathbb{D}_{0} has multi-sums,
$\triangleright \quad$ the source and target functors $S, T: \mathbb{D}_{1} \rightarrow \mathbb{D}_{0}$ are opfibrations.
In that case, the convolution product of two representable presheaves is isomorphic to the sum of representables

$$
\hat{\Delta}_{r_{2}} * \hat{\Delta}_{r_{1}} \cong \sum_{i \in I} \hat{\Delta}_{r_{2}\left\langle c_{i}\right\rangle \diamond{ }_{h}\left\langle b_{i}\right\rangle r_{1}}
$$

where the multi-sum of B and C is given by a family of cospans

$$
\left(B \stackrel{b_{i}}{\longrightarrow} U_{i} \stackrel{c_{i}}{\leftarrow} C\right)_{i \in I}
$$

and where $r_{2}\left\langle c_{i}\right\rangle$ denotes the S-pushforward of r_{2} along c_{i} and $\left\langle b_{i}\right\rangle r_{1}$ denotes the T-pushforward of r_{1} along b_{i}.

Sketch of the proof

Sketch of the proof

Illustration

From this, we obtain that the convolution product with itself

$$
\hat{\Delta}_{r} * \hat{\Delta}_{r}: \quad \mathbb{D}_{1} \longrightarrow \text { Set }
$$

of the representable presheaf

$$
\hat{\Delta}_{r}: \mathbb{D}_{1} \longrightarrow \text { Set }
$$

is isomorphic to the sum of two representable presheaves

$$
\hat{\Delta}_{r} * \hat{\Delta}_{r} \cong \hat{\Delta}_{r_{1}}+\hat{\Delta}_{r_{2}}
$$

associated to the rewrite rules r_{1} and r_{2}

$$
\begin{aligned}
& \lambda x \cdot m(e, x): \odot \multimap \odot, \lambda y \cdot m(e, y): \odot \multimap \odot \longrightarrow \text { rule }_{1} \longrightarrow \lambda x \cdot x: \odot \multimap \odot, \lambda y \cdot y: \odot \multimap \odot \\
& \lambda x . m(m(e, e), x): \odot \multimap \odot \xrightarrow{\text { rule }_{2}} \lambda x \cdot x: \odot \multimap \odot
\end{aligned}
$$

in the double category $\mathbb{D}=$ LTRS.

Illustration

Conclusion and future works

What we have done in the FSCD paper:
\triangleright a categorification of tracelets and rule algebras
$\triangleright \quad$ an axiomatic and unified framework for term and graph rewriting
\triangleright a convolution product $G, F \mapsto G * F$ for double categories
\triangleright a cylindrical decomposition property for strong associativity
A few topics we like to think about:

- make sure the framework works for higher-order rewrite systems
$\triangleright \quad$ categorify the more quantitative and stochastic aspects of tracelets
- improve our understanding of causality in rewriting systems

Thank you!

Short bibliography

Hartmut Ehrig, Hans-Jörg Kreowski.
Parallelism of manipulations in multidimensional information structures.
Mathematical Foundations of Computer Science, LNCS 1976.

Nicolas Behr and Pawel Sobociński.
Rule Algebra for Adhesive Categories.
Computer Science Logic, 2018.

Nicolas Behr, Vincent Danos, Ilias Garnier.
Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems.
Logical Methods in Computer Science, Volume 16, Issue 3, 2020.

Nicolas Behr, Paul-André Melliès, Noam Zeilberger.
Convolution products on double categories and categorification of rule algebra.
Formal Structures in Computation and Deduction, 2023.

Short bibliography

Jean-Jacques Lévy
Optimal Reductions in the Lambda-Calculus
To H.B. Curry, essays on Combinatory Logic, Lambda Calculus and Formalisms Academic Press, 1980

Andrea Asperti, Cosimo Laneve.
Interaction Systems: the theory of optimal reductions
Mathematical Structures in Computer Science, 1995.

Paul-André Melliès
Axiomatic Rewriting Theory VI: Residual Theory Revisited.
Rewriting Techniques and Applications, 2002.
Vincent van Oostrom
On Causal Equivalence by Tracing in String Rewriting
International Workshop on Computing with Terms and Graphs, 2022.

Short bibliography

Max Delbrück
Statistical Fluctuations in Autocatalytic Reactions.
The Journal of Chemical Physics, 8(1):120-124, 1940.

