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Partial order setting

O,e =EXe)=anTf,e<f,A\f)=0b
Address the shape of causal ordering among events in a single partial order!
LDy [Meenakshi04], TCL™ [Peled00],...




HYPOL : an Hyper Partial Order Logic

Part 1 : Hypol

@ Partial orders, template

@ Partial observations

@ Hypol : Syntax & Semantics

@ Satisfiability

@ Example : causal non-interference

Part 2 : Model Checking on Petri nets processes

@ Unfolding & processes
@ A grammar for unfolding
@ Execution graphs

@ From Hypol to MSO

@ Observable nets



Partial Orders, templates

0= (E, <))
@ Eis a set of events,
@ <C E x E partial order,
@ )\:E — 2% labeling

Definition : Isomorphism
0= (E,<,\) and

O = (E,<',N)are
isomorphic (O = O') iff
3h : E — E’ such that

0 o e<e < h(e) < h(e)
and

Me) = N (h(e)).




Partial Orders, templates

0= (E, <))
@ FEis a set of events,
@ <C E x E partial order,
@ )\ :E — 2% labeling

Template Matching

0= (E,<,\) and

T = (Er, <r,Ar)

O matches T iff

Jh CE,h: H— Er such
that :

@ Ar(h(e)) C A(e),

@ ¢ <7 ¢ implies
h=1(e) < h=1(e).




Partial Observations

Observation function

mapping O : LPO(X) — LPO(Y'), representing the visible part of the
system.

,LA?B ? 4] D LA?B (4 B,B?D
D,D!B
es B,B!A
D,D?B
€4 @ By
€3 @ By
e B,B?A

e) @AAB
0 O,5(0)



Observation : examples

e @ab b,c e @ab es e b e @ab es o b,c

l a,b €s1,0 a,b N Yo ey I a,b

a,b e3 l c eo @3a,b eo &3a,b e @C
18] 0,(0) 0,2(0)

01(0) : projection on events that carry label a or b,

€0

0,(0) : restriction of < to events with an a

Main idea : model the observation power of an intruder.



Hypol : Syntax & Semantics

@ A, X atomic propositions
@ T finite set of templates over A,
@ Obs finite set of observation functions

Gu= true| - | PV
| match(O, T, f)
| EXpo ¢ | EX=,0 ¢
| ¢1 EUp,o ¢2 | EGp,o ¢

where D CA, T €T, fisaneventof T,and O € Obs



Semantics

Evaluation of formulas

Formulas are evaluated over a set W of LPOs over ¥,
W satisfies ¢ iff 30=(E, <, \) € W, e € min(0),
O,eE¢

Satisfiability
A formula ¢ is satisfiable iff there exists an universe WV such that

W ¢

Satisfiability problem : Given ¢, is it satisfiable by some universe W ?

Model checking

A model M satisfies a formula ¢ iff the universe W), of its executions
satisfies ¢
Model checking problem : Given M, ¢, does Wy, = ¢ ?




Semantics : Matching
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0, e = match(O,,T,f)
iff

@ one can match T in the observation O;({ e) (causal past of ).
@ with at least a witness mapping /. s associating f with e
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Semantics : EXp o and EUp o

07 e ': EXD,O ¢

The next observed event satisfies ¢

0,(3 ': d)EUD,(’) d)

There exists an event in the
future that satisfies ¢

(D is a technicality allowing to select successors — e.g. next event on the same process—)
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Semantics : EX= o
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Semantics : EX= o

o/ ./
@) 0)
O,e = EX=0 ¢
There exists another order O’ in W and an event f such that
@0 fF®

@ O cannot distinguish the causal past of e and f
O(te)=0(te)



An example : causal Non-Interference

LetY = Zhigh W X With Ehigh = {h} and X, = {a, b}
Oiow projection of LPOs on events with label in 3y,

0 0, : Oow(01) Oiow(02)

e b ¢,0b
eln/ fiea freb 61/ fiea freb

€ ®h

Causal Non-Interference

Thga = .h — o
Pred), ::= \/ oy, match(O, 4, Th<a)
Poni = AGE’id ()‘Eth‘gh V Pred, — EXE7O’1)‘L'(A€ZIXig’1 A jPredh))

If a system satisfies ¢cni, then an intruder with observation capacity O,
cannot differentiate runs with/without 4.

In particular, a system with behaviors W = {0, 0,} does not satisfy ¢cn and
is not secure



Satisfiability

Satisfaibility of Hypol is undecidable

A PCP encoding :

fau\
/‘.41% b

I={(x0,01)s s (ayyn)} g0
(xi,y:) pair of words in A*. :

iy ... i such that

xil . .xik = yil .. .yik ? tWO'pfedtf = AGP,id()\:{n) — ﬂmatch(Ot.Tt,fn))
IsSeqindex ::= EGg,o,(Vi_ HoldsT;) N\ EFp jqstop
¢p == two-predi A IsSeqindex A (stop = EX= o,,true)

PCP instance I has a solution if 30, e such that 0, ¢ |= ¢;



Part 2 : Model Checking on Petri nets Processes



A labeled Petri netis a
tuple N = (P, T, F, M,)
@ P :set of places,

@ T set of transitions

@ FCPXTUTxP flow
relation,

@ M, € N? is the initial
marking.

QN T— X




Process Semantics
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Process Semantics
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Process Semantics
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P, fd
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©

N Wi € Proc(N) 0, = Ord(W))



Process Semantics : model checking

Model checking Hypol on Petri nets

Let A be a Petri net, PR(N) its set of processes
Let ¢ be an hypol formula :
N E ¢ iff 30 € Ord(PR(N)), e € min(O) such that O,e = ¢

Unfortunately ....

Undecidability

Model checking of Hypol properties for (safe) Petri nets is
undecidable.

Why : PCP encoding. For every instance I of PCP, can build a net N;
such that A [ ¢ iff this instance of PCP has a solution.



Process Semantics : model checking

N is observable (wrt Oy, ... O) iff

i) YO;, every cyclic behavior produces something observable by O;
at every iteration,

ii) YO;, choices eventually appear in observation after k. steps,

iii) YO;, there exists a bound on the size of parallel threads which
have identical observation



Process Semantics : model checking

o
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O, : projection on events with labels in {b,d, ¢}.

i) : N does not remain unobservable forever



Process Semantics : model checking

ii) o iy
i N Tl
| e
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O, : projection on events with label a.

i) +ii) +iii) == anevent e is always equivalent
to a bounded number of events
in a bounded past / parallel part



Model checking of Hypol

Hypol model-checking is decidable for observable nets.

@ show that processes of a nets can be seen as a regular graph G§;
@ isomorphism up to observation O; can be encoded as an

additional relation — :
gives a new (non regular) graph Gy

@ Show that Hypol properties of safe nets can be encoded as MSO
properties

@ |dentify a class of K—layered nets where G, is regular
Hypol decidable on this class!

@ Show that observable nets belong to this class



Branching processes

Branching processes “"unfold” Petri nets

Definition (Branching

Process)
A branching process of ®
N = (P, T,F,Myp, \)is a aL d

triple BR = (ON, i, \)
@ ON= (B,E,F,Cuty) is .
an occurrence net,
@ 1 is a homomorphism

and Ve € E, N (¢) = A(u(e)). O O

d
Definition (Unfolding) g

The unfolding of N, U(N),
is the maximal branching
process.

U(N) can be seen as the union of all processes of A/



Unfolding & processes
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Unfolding & Processes

Conflicts

9 Two events e, f are conflicting if

@ they are not causally
related

@ they have a common

cg ~ place in their past
O ,
ik 3
@ Uy is a graph
O @ Processes of \/ are
projections of U on

maximal conflict-free sets
of events & conditions




A grammar for unfolding

Idea of the construction :
Stop unfolding when reaching a marking already drawn

=
6le

Close to Complete Finite Prefixes
[McMillan95, Esparza02]

dj\g




A grammar for unfolding

Idea of the construction :
Stop unfolding when reaching a marking already drawn

a? d/E b
Cg : T dg u
Close to Complete Finite Prefixes
[McMillan95, Esparza02]




A grammar for unfolding

Idea of the construction :
Stop unfolding when reaching a marking already drawn

e

Close to Complete Flnlte Prefixes
[McMillan95, Esparza02]




Graph Grammars

One can effectively build a graph grammar G that generates Uy

Axiom |> ‘Op
e o[

Interesting...

Graphs generated by graph grammars have bounded treewidth

@ size of the largest vertex set in a tree decomposition of the graph
@ nb. colors needed to generate a graph with a simple graph algebra
MSO is decidable for graph grammars

Idea : translate ¢ to an equivalent MSO formula ... .... but ...

Isomorphism cannot be expressed in MSO.



Execution graph

Execution Graph
An unfolding, plus explicit representation of isomorphisms

Guy =Un ¥ {e -1 |0l e) = 0L}

Proposition

There exist labeled safe Petri
nets and observation functions
whose execution graphs are
not of bounded treewidth

;g;f*g

: erases occurrences of d



From Hypol to MSO

Theorem

For every Hypol formula ¢ and every safe Petri net N, there exists an
MSO formula ) such that N' = ¢ iff Gy, = ¢

Proof idea :
@ e <f,e<f,x <pyexpressible as an MSO property of G,,.
@ O;({ e) = O;(] f) is a simple relation e —i>f

Then inductive construction.

Example : ¢ = EXp o ¢

Let x be a variable representing an event
C be a set of variable names already in use
MSO(¢,x,C) = Jy,x <o y NMSO(¢,y,C’)
with
@ yis a fresh variable name (w.r.t. C and to the set C,<,,, of
variables used to encode x <o y)

@ C'=CU{y}UCi<py;



From Hypol to MSO

Immediate corollaries :

Corollary

Hypol \EX= o, is decidable for safe Petri nets

Proof : Equivalence edges are not used. MSO decidable for graph
grammars [Courcelle90)
Checking V' = ¢ = checking G |= MSO(¢)

Corollary

MSO is undecidable on execution graphs of safe Petri nets

Proof : Consistent with former theorems. Further G;,, may contain
infinite grids minors (a condition for undecidability of MSO
[Robertson&Seymour91])



Observable nets & Layeredness

Distance between events

dist(e,f) = maximal number of edges
between {e,f} and their common past

The K — Ball of e in Uy is the set

Ballg(e) = {f € E | dist(e,f) < K}




Equivalence decision on K—layered graphs

Definition : K-layeredness

N is K—layered for observations
O],...,Oq iff :
@ the K—ball of every event e of
Uy is finite
@ VO, dist(e,f) > K implies
e#if
@ ¢ =; f can be decided from
the contents of Ballk(e) and

Ball
o) O O
Let A be a K—layered safe Petri net (w.r.t. Oy,...,O,). Then, one can

effectively compute a graph grammar Gk ar that recognizes Gy,

Proof idea : Hyperedges memorize K—balls of maximal events.



Equivalence decision on K-layered graphs

Corollary

Hypol model checking is decidable for K—layered nets.

Open question
Is K—layeredness decidable ?

Theorem
Observable nets are K—layered for some K < max(2 - k., 3 - |T|)

Corollary
Hypol model checking is decidable for Observable nets



Conclusion

Contributions

@ A new partial order hyperlogic : Hypol
@ Hypol Model checking decidable for K—Layered nets.
@ A decidable subclass : Observable nets

@ Complexity ?

@ Decidability of K—layeredness ?
@ Unbounded Petri nets ?

@ Other types of regular models ?
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