Making concurrent systems probabilistic

Samy Abbes (Univ. Paris Cité/IRIF)
joint work with Vincent Jugé (Univ. Gustave Eiffel/LIGM) Jean Mairesse (CNRS/LIP6)

Workshop Pomsets and Related Structures (RaPS)
April $24^{\text {th }}, 2024$

Outline

Framework

Looking for the probabilistic parameters

Several examples

Semantics and theory

Framework (1): an example of trace monoid

word cadb
resulting trace $a \cdot c \cdot b \cdot d=c \cdot a \cdot d \cdot b$

- Alphabet $\Sigma=\{a, b, c, d\}$ of generators
- Traces \Longleftrightarrow heaps obtained in a "Tetris"-like way by letting generators fall
- Commutation relations between generators:

$$
a \cdot c=c \cdot a \quad a \cdot d=d \cdot a \quad b \cdot d=d \cdot b
$$

Framework (1): an example of trace monoid

Structure

- Heaps are in bijection with the elements of the trace monoid:

$$
\mathcal{M}=\langle\underbrace{a, b, c, d}_{\text {generators }} \mid \underbrace{a c=c a, a d=d a, b d=d b}_{\text {commutation relations }}\rangle
$$

Elements of \mathcal{M} are words on $\{a, b, c, d\}$ up to the congruence generated by the 3 commutation relations

Framework (1): an example of trace monoid

Structure

- Heaps are in bijection with the elements of the trace monoid:

$$
\mathcal{M}=\langle\underbrace{a, b, c, d}_{\text {generators }} \mid \underbrace{a c=c a, a d=d a, b d=d b}_{\text {commutation relations }}\rangle
$$

Elements of \mathcal{M} are words on $\{a, b, c, d\}$ up to the congruence generated by the 3 commutation relations

- \mathcal{M} comes with:
- a monoid structure, i.e., an associative composition $(x, y) \in \mathcal{M} \times \mathcal{M} \mapsto x \cdot y$ and a neutral element ε (the empty trace)
- a length function $x \in \mathcal{M} \mapsto|x| \in \mathbb{N}$, number of letters in x
- a partial order relation: $x \leq y \Longleftrightarrow \exists z \in \mathcal{M} \quad y=x \cdot z$

Framework (2): an example of action of trace monoid

Framework (2): an example of action of trace monoid

$$
\begin{gathered}
\mathcal{M}=\langle a, b, c, d \mid a c=c a, a d=d a, b d=d b\rangle \\
\\
X \subseteq\{0,1\}^{5}
\end{gathered}
$$

Framework (2): an example of 1-safe Petri net

$$
\left.\begin{array}{rl}
X & =\{0,1\} \text { the two markings of the net } \\
\mathcal{M} & =\langle\underbrace{a, a^{\prime}, b, c, d}_{\text {transitions of the net }} \mid \underbrace{a^{\prime} b=b a^{\prime}, \ldots, b d=d b}_{\bullet \cdot \bullet \cap \bullet^{\prime}=\emptyset}\rangle
\end{array}\right\} \begin{gathered}
\text { True-concurrent } \\
\text { semantics: action } \\
\text { of } \mathcal{M} \text { on } X
\end{gathered}
$$

Franework (2): action of \mathcal{M} on X

A trace monoid \mathcal{M} acts on a set of states X with an additional sink state \perp

$$
\left.\begin{array}{rl}
\{X \cup\{\perp\}) \times \mathcal{M} & \rightarrow X \cup\{\perp\} \\
(\alpha, x) & \mapsto \alpha \cdot x
\end{array}\right\} \begin{aligned}
(X \cdot x \cdot y)=(\alpha \cdot x) \cdot y, \quad \alpha \cdot \varepsilon=\varepsilon, \quad \perp \cdot x=\perp
\end{aligned}
$$

Franework (2): action of \mathcal{M} on X

A trace monoid \mathcal{M} acts on a set of states X with an additional sink state \perp

$$
\begin{aligned}
\left\{\begin{aligned}
(X \cup\{\perp\}) \times \mathcal{M} & \rightarrow X \cup\{\perp\} \\
(\alpha, x) & \mapsto \alpha \cdot x
\end{aligned}\right. \\
\alpha \cdot(x \cdot y)=(\alpha \cdot x) \cdot y, \quad \alpha \cdot \varepsilon=\varepsilon, \quad \perp \cdot x=\perp
\end{aligned}
$$

Semantics

- $\alpha \cdot x \neq \perp \Longleftrightarrow$
$\left\{\begin{array}{l}x \text { is an execution of the system from the initial state } \alpha \\ \alpha \cdot x \text { is the state reached after playing } x \in \mathcal{M} \text { from } \alpha\end{array}\right.$
- $\alpha \cdot x=\perp \Longleftrightarrow$ playing x from α is forbidden

Outline

Framework

Looking for the probabilistic parameters

Several examples

Semantics and theory

Randomizing the executions

- Data: concurrent system (\mathcal{M}, X, \perp)
- Goal: determine the probabilistic parameters $\lambda_{\alpha}(a)$ as the "probability of playing the letter $a \in \Sigma$ from the state $\alpha \in X$ "

Randomizing the executions

- Data: concurrent system (\mathcal{M}, X, \perp)
- Goal: determine the probabilistic parameters $\lambda_{\alpha}(a)$ as the "probability of playing the letter $a \in \Sigma$ from the state $\alpha \in X$ "
With the intuitive properties:

$$
\begin{aligned}
\alpha \cdot a=\perp & \Longleftrightarrow \lambda_{\alpha}(a)=0 \\
a \cdot b=b \cdot a & \Longrightarrow \underbrace{\lambda_{\alpha}(a) \lambda_{\alpha \cdot a}(b)}_{\begin{array}{c}
\text { probability of } \\
\text { playing } a \cdot b \text { from } \alpha
\end{array}}=\underbrace{\lambda_{\alpha}(b) \lambda_{\alpha \cdot b}(a)}_{\begin{array}{c}
\text { probability of } \\
\text { playing } b \cdot a \text { from } \alpha
\end{array}}
\end{aligned}
$$

Randomizing the executions

- Data: concurrent system (\mathcal{M}, X, \perp)
- Goal: determine the probabilistic parameters $\lambda_{\alpha}(a)$ as the "probability of playing the letter $a \in \Sigma$ from the state $\alpha \in X$ "

Without concurrency:

$$
\forall \alpha \in X \quad \sum_{a \in \Sigma} \lambda_{\alpha}(a)=1
$$

What is the correct normalization condition with concurrency?

Outline

Framework
 Looking for the probabilistic parameters

Several examples

Semantics and theory

Basic case: the trace monoid with one state

Trivial action $\{*\} \times \mathcal{M} \rightarrow\{*\}:$ as if there was no state $\mathcal{M}=\langle a, b, c, d \mid a c=c a, a d=d a, b d=d b\rangle$
Denote by the same letters a, b, c, d the sought probabilistic parameters. Then:

$$
1-a-b-c-d+\underbrace{a c+a d+b d}_{\begin{array}{c}
\text { commutation cliques } \\
\text { of order } 2
\end{array}}=0
$$

Basic case: the trace monoid with one state

Trivial action $\{*\} \times \mathcal{M} \rightarrow\{*\}:$ as if there was no state $\mathcal{M}=\langle a, b, c, d \mid a c=c a, a d=d a, b d=d b\rangle$
Denote by the same letters a, b, c, d the sought probabilistic parameters. Then:

$$
1-a-b-c-d+\underbrace{a c+a d+b d}_{\begin{array}{c}
\text { commutation cliques } \\
\text { of order } 2
\end{array}}=0
$$

Particular case: all parameters are equal for the uniform measure root of the Möbius polynomial of $\mathcal{M}: \quad 1-4 t+3 t^{2}=0 \longrightarrow t=\frac{1}{3}(!!)$ Interpretation: All traces of a given length k have the same probability $\left(\frac{1}{3}\right)^{k}$ to appear at the beginning of a random infinite execution

The Petri net example (1)

The Petri net example (1)

At marking 0: parameters $a_{0}^{\prime}, a_{0}, b_{0}, c_{0}, d_{0}$ At marking 1: parameters $a_{1}^{\prime}, a_{1}, b_{1}, c_{1}, d_{1}$

The Petri net example (1)

The Petri net example (1)

equality in $\mathcal{M}: a^{\prime} \cdot b=b \cdot a^{\prime} \Longrightarrow a_{0}^{\prime} b_{0}=b_{0} a_{1}^{\prime} \Longrightarrow a_{0}^{\prime}=a_{1}^{\prime}$ equality in $\mathcal{M}: b \cdot d=d \cdot b \Longrightarrow b_{0} d_{1}=d_{0} b_{0} \Longrightarrow d_{0}=d_{1}$

5 parameters only: $\quad a^{\prime}=a_{0}^{\prime}, \quad a=a_{0}, \quad b=b_{0}, \quad c=c_{1}, \quad d=d_{1}$

The Petri net example (1)

At 0: $1-\underbrace{a^{\prime}-a-b-d}_{\text {commutation cliques }}+\underbrace{a^{\prime} b+a^{\prime} d+a d+b d}_{\text {idem order 2 }}-\underbrace{a^{\prime} b d}_{\text {idem order } 3}=0$ of order 1 that can
play at marking 0

The Petri net example (1)

At 1: $1-a^{\prime}-c-d+a^{\prime} c+a^{\prime} d=0$

The Petri net example (1)

Question: is there a solution to satisfy both normalization conditions?

$$
\begin{gathered}
\left(1-a^{\prime}-a-b+a^{\prime} b\right)(1-d)=0 \\
(1-c-d)\left(1-a^{\prime}\right)=0
\end{gathered}
$$

The Petri net example (2): the uniform measure

the Möbius matrix: $\quad M(t)=\left(\begin{array}{cc}1-3 t+2 t^{2} & -t+2 t^{2}-t^{3} \\ -t+t^{2} & 1-2 t+t^{2}\end{array}\right) \begin{aligned} & 0 \\ & 1\end{aligned}$

$$
\theta(t)=\operatorname{det} M(t)=(1-t)^{3}\left(1-2 t-t^{2}\right) \longrightarrow r=\sqrt{2}-1
$$

The Petri net example (2): the uniform measure

$$
M(r)=\left(\begin{array}{cc}
10-7 \sqrt{2} & 2(7-5 \sqrt{2}) \\
4-3 \sqrt{2} & 2(3-2 \sqrt{2})
\end{array}\right)
$$

ker $M(r)=\operatorname{Vect}(u) \quad$ with $u=\binom{2}{\sqrt{2}}=\binom{u_{0}}{u_{1}} \quad$ a positive vector

The Petri net example (2): the uniform measure

Use the following normalized parameters:

$$
\text { for } \alpha=0,1 \text { and } \sigma=a^{\prime}, a, b, c, d \quad \lambda_{\alpha}(\sigma)=r \frac{u_{\alpha \cdot \sigma}}{u_{\alpha}}
$$

and then for any $x=\sigma_{1} \cdot \ldots \cdot \sigma_{k} \in \mathcal{M}: \quad f_{\alpha}(x)=r^{|x|} \frac{u_{\alpha \cdot x}}{u_{\alpha}}$

The Petri net example (2): the uniform measure

$$
\begin{array}{c|c|c|c|c|c}
\sigma \in \Sigma & a^{\prime} & a & b & c & d \\
\lambda(\sigma) & -1+\sqrt{2} & -1+\sqrt{2} & 1-\frac{1}{2} \sqrt{2} & 2-\sqrt{2} & -1+\sqrt{2} \\
\approx \lambda(\sigma) & .4142 & .4142 & .2929 & .5858 & .4142
\end{array}
$$

Outline

> Framework

> Looking for the probabilistic parameters

> Several examples

Semantics and theory

Semantics

For a trace monoid \mathcal{M} :

- $\partial \mathcal{M}$ is the space of infinite traces
- for $x \in \mathcal{M}$ the visual cylinder of base x is
$\uparrow x=\{\omega \in \partial \mathcal{M}: x \leq \omega\}$

Semantics

For a trace monoid \mathcal{M} :

- $\partial \mathcal{M}$ is the space of infinite traces
- for $x \in \mathcal{M}$ the visual cylinder of base x is
$\uparrow x=\{\omega \in \partial \mathcal{M}: x \leq \omega\}$
- a probability measure ν on $\partial \mathcal{M}$ is entirely determined by the countable collection of values $\nu(\uparrow x)$, for $x \in \mathcal{M}$

Semantics

For a trace monoid \mathcal{M} :

- $\partial \mathcal{M}$ is the space of infinite traces
- for $x \in \mathcal{M}$ the visual cylinder of base x is
$\uparrow x=\{\omega \in \partial \mathcal{M}: x \leq \omega\}$
- a probability measure ν on $\partial \mathcal{M}$ is entirely determined by the countable collection of values $\nu(\uparrow x)$, for $x \in \mathcal{M}$
- $\nu(\uparrow x)$ is the probability of seing x at the "beginning" of a random infinite execution

Semantics

For a concurrent system (\mathcal{M}, X, \perp):

- a Markov measure is a collection $\left(\nu_{\alpha}\right)_{\alpha \in X}$ of probability measures on $\partial \mathcal{M}$ such that:

$$
\forall \alpha \in X \quad \forall x \in \mathcal{M} \quad \nu_{\alpha}(\uparrow x)>0 \Longleftrightarrow \alpha \cdot x \neq \perp
$$

and satisfying the chain rule: $\forall \alpha \in X \quad \forall x, y \in \mathcal{M}$

$$
\nu_{\alpha}(\uparrow(x \cdot y))=\nu_{\alpha}(\uparrow x) \nu_{\alpha \cdot x}(\uparrow y)
$$

Semantics

For a concurrent system (\mathcal{M}, X, \perp) :

- a Markov measure is a collection $\left(\nu_{\alpha}\right)_{\alpha \in X}$ of probability measures on $\partial \mathcal{M}$ such that:

$$
\begin{array}{r}
\forall \alpha \in X \quad \forall x \in \mathcal{M} \quad \nu_{\alpha}(\uparrow x)>0 \Longleftrightarrow \alpha \cdot x \neq \perp \\
\text { and satisfying the chain rule: } \forall \alpha \in X \quad \forall x, y \in \mathcal{M} \\
\qquad \nu_{\alpha}(\uparrow(x \cdot y))=\nu_{\alpha}(\uparrow x) \nu_{\alpha \cdot x}(\uparrow y)
\end{array}
$$

- Question 1: do Markov measures always exist?
- Question 2: determine all of them
- Question 3: how to simulate a given Markov measure?

Semantics

Reformulation

The valuation associated to the Markov measure ν is the family $f=\left(f_{\alpha}\right)_{\alpha \in X}$ of functions $f_{\alpha}: \mathcal{M} \rightarrow \mathbb{R}_{\geq 0}$ defined by

$$
f_{\alpha}(x)=\nu_{\alpha}(\uparrow x)
$$

Semantics

Reformulation

The valuation associated to the Markov measure ν is the family $f=\left(f_{\alpha}\right)_{\alpha \in X}$ of functions $f_{\alpha}: \mathcal{M} \rightarrow \mathbb{R}_{\geq 0}$ defined by

$$
f_{\alpha}(x)=\nu_{\alpha}(\uparrow x)
$$

The functions f_{α} satisfy:

$$
\begin{aligned}
& \text { 1) } f_{\alpha}(x)>0 \Longleftrightarrow \alpha \cdot x \neq \perp \\
& \text { 2) } f_{\alpha}(x \cdot y)=f_{\alpha}(x) f_{\alpha \cdot x}(y) \\
& \Longrightarrow f_{\alpha}(a \cdot b \cdot c)=f_{\alpha}(b) f_{\alpha \cdot a}(b) f_{\alpha \cdot a \cdot b}(c)
\end{aligned}
$$

f is determined by the finite collection of parameters

$$
\lambda_{\alpha}(a)=f_{\alpha}(a), \quad(\alpha, a) \in X \times \Sigma
$$

Semantics

Reformulation

The valuation associated to the Markov measure ν is the family $f=\left(f_{\alpha}\right)_{\alpha \in X}$ of functions $f_{\alpha}: \mathcal{M} \rightarrow \mathbb{R}_{\geq 0}$ defined by

$$
f_{\alpha}(x)=\nu_{\alpha}(\uparrow x)
$$

- Conversely: What are the normalization conditions on $\left(\lambda_{\alpha}(a)\right)_{(\alpha, a) \in X \times \Sigma}$ for the associated valuation f to be probabilistic (i.e., induced by some probability measure)?

Theory: probabilistic trace monoids

In case of a trace monoid with the trivial action $\{*\} \times \mathcal{M} \rightarrow\{*\} \quad$ (no state, no constraint)

The valuation f is a single function $f: \mathcal{M} \rightarrow \mathbb{R}_{>0}$ satisfying:

$$
\forall x, y \in \mathcal{M} \quad f(x \cdot y)=f(x) f(y)
$$

and determined by the collection $(f(a))_{a \in \Sigma}$

$$
f\left(a_{1} \cdot \ldots \cdot a_{k}\right)=f\left(a_{1}\right) \ldots f\left(a_{k}\right)
$$

The associated probability measure is said to be memoryless (rather than Markov)

Theory: probabilistic trace monoids

Given a function $f: \mathcal{M} \rightarrow \mathbb{R}_{>0}$, its Möbius transform is the function $h: \mathscr{C} \rightarrow \mathbb{R}$

$$
\forall \gamma \in \mathscr{C} \quad h(\gamma)=\sum_{\gamma^{\prime} \in \mathscr{C}: \gamma \leq \gamma^{\prime}}(-1)^{\left|\gamma^{\prime}\right|-|\gamma|} f\left(\gamma^{\prime}\right)
$$

where \mathscr{C} is the (finite) set of commutation cliques of \mathcal{M} and then the Möbius inversion formula holds:

$$
\forall \gamma \in \mathscr{C} \quad f(\gamma)=\sum_{\gamma^{\prime} \in \mathscr{C}: \gamma \leq \gamma^{\prime}} h\left(\gamma^{\prime}\right)
$$

Theory: probabilistic trace monoids

Normal form of traces

- A pair $\left(\gamma, \gamma^{\prime}\right)$ of cliques is normal, denoted $\gamma \rightarrow \gamma^{\prime}$, if:

$$
\forall z \in \gamma^{\prime} \quad \exists y \in \gamma \quad \neg(y \| z)
$$

OK $\quad c \rightarrow(b \cdot d)$

not $O K \quad a \nrightarrow(b \cdot d)$

Theory: probabilistic trace monoids

Normal form of traces

- For every trace x there exists a unique integer $k \geq 0$ and a unique sequence $\left(c_{1}, \ldots, c_{k}\right)$ of cliques such that

$$
\text { 1) } c_{i} \rightarrow c_{i+1} \quad \text { 2) } x=c_{1} \cdot \ldots \cdot c_{k}
$$

- The same works for infinite traces
- If $\partial \mathcal{M}$ is equipped with a probability measure ν, then the sequence $\left(C_{i}\right)_{i \geq 1}$ is a random process (every C_{i} is a finite random variable)

Theory: probabilistic trace monoids

Proposition
If ν is a probability measure on $\partial \mathcal{M}$ and $f(x)=\nu(\uparrow x)$, then the law of C_{1} is h, the Möbius transform of f :

$$
\nu\left(C_{1}=\gamma\right)=\sum_{\gamma^{\prime} \in \mathscr{C}: \gamma \leq \gamma^{\prime}}(-1)^{\left|\gamma^{\prime}\right|-|\gamma|} f\left(\gamma^{\prime}\right)
$$

Theory: probabilistic trace monoids

Consequence
If $f(a)=r$ for all $a \in \Sigma$, then $f(x)=r^{|x|}$
total probability law for $C_{1}: \quad \sum_{\gamma \in \mathscr{C}} \nu\left(C_{1}=\gamma\right)=1$
yielding $\quad \mu(r)=0 \quad$ (Möbius polynomial of \mathcal{M})
Actually: r must be the root of smallest modulus of $\mu(t)$, which is unique and in $(0,1)$

Example

$$
\begin{array}{r}
\left.\mathcal{M}=\left\langle a_{0}, \ldots, a_{4}\right| a_{i} a_{j}=a_{j} a_{i}|i-j| \quad \bmod 5 \geq 2\right\rangle \\
\mu(t)=1-5 t+5 t^{2} \rightarrow r=\underbrace{\frac{5 \pm \sqrt{5}}{10}}_{\text {both in }(0,1)} \rightarrow r=\frac{5-\sqrt{5}}{10}
\end{array}
$$

Theory: probabilistic trace monoids

Law of the first clique for the uniform measure on $\mathcal{M}=\langle a, b, c, d \mid a c=c a, a d=d a, b d=d b\rangle$

$$
\begin{gathered}
\mu(t)=1-4 t+3 t^{2} \rightarrow r=\frac{1}{3} \\
h(a)=f(a)-f(a \cdot c)-f(a \cdot d)=r-2 r^{2}=\frac{1}{9} \\
h(b)=f(b)-f(b \cdot d)=r-r^{2}=\frac{2}{9} \\
h(a \cdot c)=f(a \cdot c)=r^{2}=\frac{1}{9}
\end{gathered}
$$

$\gamma \in \mathscr{C}$	a	b	c	d	$a \cdot c$	$a \cdot d$	$b \cdot d$
$h(\gamma)$ (proba of $\left.C_{1}=\gamma\right)$	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$f(\gamma)\left(\right.$ proba of $\left.C_{1} \geq \gamma\right)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

Theory: probabilistic concurrent systems

For concurrent systems, an extension of the previous techniques works in connection with

- linear algebra
- analytic combinatorics

