Making concurrent systems probabilistic

Samy Abbes (Univ. Paris Cité/IRIF)

joint work with Vincent Jugé (Univ. Gustave Eiffel/LIGM) Jean Mairesse (CNRS/LIP6)

Workshop Pomsets and Related Structures (RaPS)

April 24th, 2024

Outline

Framework

Looking for the probabilistic parameters

Several examples

Semantics and theory

Framework (1): an example of trace monoid

• Alphabet $\Sigma = \{a, b, c, d\}$ of **generators**

- Traces \leftarrow heaps obtained in a "Tetris"-like way by letting generators fall
- Commutation relations between generators:

$$a \cdot c = c \cdot a$$
 $a \cdot d = d \cdot a$ $b \cdot d = d \cdot b$

Framework (1): an example of trace monoid

Structure

Heaps are in bijection with the elements of the trace monoid:

$$\mathcal{M} = \left\langle \underbrace{a, b, c, d}_{\text{generators}} \mid \underbrace{ac = ca, \ ad = da, \ bd = db}_{\text{commutation relations}} \right\rangle$$

Elements of \mathcal{M} are words on $\{a, b, c, d\}$ up to the congruence generated by the 3 commutation relations

Framework (1): an example of trace monoid

Structure

Heaps are in bijection with the elements of the trace monoid:

$$\mathcal{M} = \left\langle \underbrace{a, b, c, d}_{\text{generators}} \mid \underbrace{ac = ca, \ ad = da, \ bd = db}_{\text{commutation relations}} \right\rangle$$

Elements of \mathcal{M} are words on $\{a, b, c, d\}$ up to the congruence generated by the 3 commutation relations

M comes with:

- ▶ a monoid structure, i.e., an associative composition $(x, y) \in \mathcal{M} \times \mathcal{M} \mapsto x \cdot y$ and a neutral element ε (the empty trace)
- ▶ a *length function* $x \in \mathcal{M} \mapsto |x| \in \mathbb{N}$, number of letters in x
- ▶ a partial order relation: $x \le y \iff \exists z \in \mathcal{M} \quad y = x \cdot z$

Framework (2): an example of action of trace monoid

Framework (2): an example of action of trace monoid

$$\mathcal{M}=ig\langle \ a,b,c,d \ | \ ac=ca, \ ad=da, \ bd=db ig
angle$$
 $X\subseteq \{0,1\}^5$

Framework (2): an example of 1-safe Petri net

$$X = \{0, 1\} \text{ the two markings of the net} \\ \mathcal{M} = \left\langle \underbrace{a, a', b, c, d}_{\text{transitions of the net}} \middle| \underbrace{a'b = ba', \dots, bd = db}_{\bullet t^{\bullet} \cap \bullet t'^{\bullet} = \emptyset} \right\rangle$$
True-concurrent semantics: action of \mathcal{M} on X

Franework (2): action of \mathcal{M} on X

A trace monoid ${\mathcal M}$ acts on a set of states X with an additional sink state \bot

$$\begin{cases} (X \cup \{\bot\}) \times \mathcal{M} \to X \cup \{\bot\} \\ (\alpha, x) \mapsto \alpha \cdot x \end{cases}$$
$$\alpha \cdot (x \cdot y) = (\alpha \cdot x) \cdot y, \qquad \alpha \cdot \varepsilon = \varepsilon, \qquad \bot \cdot x = \bot$$

Franework (2): action of \mathcal{M} on X

A trace monoid ${\mathcal M}$ acts on a set of states X with an additional sink state \bot

$$\begin{cases} (X \cup \{\bot\}) \times \mathcal{M} \to X \cup \{\bot\} \\ (\alpha, x) \mapsto \alpha \cdot x \end{cases}$$
$$\alpha \cdot (x \cdot y) = (\alpha \cdot x) \cdot y, \qquad \alpha \cdot \varepsilon = \varepsilon, \qquad \bot \cdot x = \bot$$

Semantics

•
$$\alpha \cdot x \neq \bot \iff$$

$$\begin{cases} x \text{ is an execution of the system from the initial state } \alpha \\ \alpha \cdot x \text{ is the state reached after playing } x \in \mathcal{M} \text{ from } \alpha \end{cases}$$
• $\alpha \cdot x = \bot \iff$ playing x from α is forbidden

Outline

Framework

Looking for the probabilistic parameters

Several examples

Semantics and theory

Randomizing the executions

Data: concurrent system (\mathcal{M}, X, \bot)

Goal: determine the probabilistic parameters λ_α(a) as the "probability of playing the letter a ∈ Σ from the state α ∈ X"

Randomizing the executions

Data: concurrent system (\mathcal{M}, X, \bot)

Goal: determine the probabilistic parameters $\lambda_{\alpha}(a)$ as the "probability of playing the letter $a \in \Sigma$ from the state $\alpha \in X$ " With the intuitive properties:

$$\alpha \cdot a = \bot \iff \lambda_{\alpha}(a) = 0$$
$$a \cdot b = b \cdot a \implies \underbrace{\lambda_{\alpha}(a)\lambda_{\alpha \cdot a}(b)}_{\text{probability of}} = \underbrace{\lambda_{\alpha}(b)\lambda_{\alpha \cdot b}(a)}_{\text{probability of}}$$

probability of probability of probability of playing $b \cdot a$ from α

Randomizing the executions

- **Data:** concurrent system (\mathcal{M}, X, \bot)
- Goal: determine the probabilistic parameters λ_α(a) as the "probability of playing the letter a ∈ Σ from the state α ∈ X"

Without concurrency:

$$\forall lpha \in X \quad \sum_{\mathbf{a} \in \Sigma} \lambda_{\alpha}(\mathbf{a}) = 1$$

What is the correct normalization condition with concurrency?

Outline

Framework

Looking for the probabilistic parameters

Several examples

Semantics and theory

Basic case: the trace monoid with one state

Trivial action $\{*\} \times \mathcal{M} \rightarrow \{*\}$: as if there was no state $\mathcal{M} = \langle a, b, c, d \mid ac = ca, ad = da, bd = db \rangle$ Denote by the same letters a, b, c, d the sought probabilistic parameters. Then:

$$1 - a - b - c - d + \underbrace{ac + ad + bd}_{\text{commutation cliques}} = 0$$

Basic case: the trace monoid with one state

Trivial action $\{*\} \times \mathcal{M} \rightarrow \{*\}$: as if there was no state $\mathcal{M} = \langle a, b, c, d \mid ac = ca, ad = da, bd = db \rangle$ Denote by the same letters a, b, c, d the sought probabilistic parameters. Then:

$$1 - a - b - c - d + \underbrace{ac + ad + bd}_{\text{commutation cliques}} = 0$$

Particular case: all parameters are equal for the uniform measure

root of the Möbius polynomial of \mathcal{M} : $1 - 4t + 3t^2 = 0 \longrightarrow t = \frac{1}{3}$ (!!)

Interpretation: All traces of a given length k have the same probability $\left(\frac{1}{3}\right)^k$ to appear at the beginning of a random infinite execution

At marking 0: parameters a'_0 , a_0 , b_0 , c_0 , d_0 At marking 1: parameters a'_1 , a_1 , b_1 , c_1 , d_1

$$0 \cdot c = \bot \implies c_0 = 0$$

 $1 \cdot a = \bot \implies a_1 = 0$
 $1 \cdot b = \bot \implies b_1 = 0$

equality in \mathcal{M} : $a' \cdot b = b \cdot a' \implies a'_0 b_0 = b_0 a'_1 \implies a'_0 = a'_1$ equality in \mathcal{M} : $b \cdot d = d \cdot b \implies b_0 d_1 = d_0 b_0 \implies d_0 = d_1$

5 parameters only: $a'=a_0', a=a_0, b=b_0, c=c_1, d=d_1$

At 0:
$$1 - \underbrace{a' - a - b - d}_{\text{commutation cliques}} + \underbrace{a'b + a'd + ad + bd}_{idem \text{ order } 2} - \underbrace{a'bd}_{idem \text{ order } 3} = 0$$

At 1: 1 - a' - c - d + a'c + a'd = 0

Question: is there a solution to satisfy both normalization conditions?

$$(1 - a' - a - b + a'b)(1 - d) = 0$$

 $(1 - c - d)(1 - a') = 0$

the Möbius matrix:
$$M(t) = \begin{pmatrix} 1 - 3t + 2t^2 & -t + 2t^2 - t^3 \\ -t + t^2 & 1 - 2t + t^2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\theta(t) = \det M(t) = (1 - t)^3 (1 - 2t - t^2) \longrightarrow \boxed{r = \sqrt{2} - 1}$

$$M(r) = \begin{pmatrix} 10 - 7\sqrt{2} & 2(7 - 5\sqrt{2}) \\ 4 - 3\sqrt{2} & 2(3 - 2\sqrt{2}) \end{pmatrix}$$

ker $M(r) = \text{Vect}(u)$ with $u = \begin{pmatrix} 2 \\ \sqrt{2} \end{pmatrix} = \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}$ a positive vector

Use the following normalized parameters:

for
$$\alpha = 0, 1$$
 and $\sigma = a', a, b, c, d$ $\lambda_{\alpha}(\sigma) = r \frac{u_{\alpha \cdot \sigma}}{u_{\alpha}}$
and then for any $x = \sigma_1 \cdot \ldots \cdot \sigma_k \in \mathcal{M}$: $f_{\alpha}(x) = r^{|x|} \frac{u_{\alpha \cdot x}}{u_{\alpha}}$

Outline

Framework

Looking for the probabilistic parameters

Several examples

Semantics and theory

For a trace monoid \mathcal{M} :

▶ $\partial \mathcal{M}$ is the space of *infinite traces*

• for
$$x \in \mathcal{M}$$
 the visual cylinder of base x is
 $\uparrow x = \{ \omega \in \partial \mathcal{M} : x \leq \omega \}$

For a trace monoid \mathcal{M} :

- $\partial \mathcal{M}$ is the space of *infinite traces*
- For x ∈ M the visual cylinder of base x is ↑x = {ω ∈ ∂M : x ≤ ω}
- ▶ a probability measure ν on ∂M is entirely determined by the countable collection of values $\nu(\uparrow x)$, for $x \in M$

For a trace monoid \mathcal{M} :

- ► ∂*M* is the space of *infinite traces*
- For x ∈ M the visual cylinder of base x is ↑x = {ω ∈ ∂M : x ≤ ω}
- ▶ a probability measure ν on ∂M is entirely determined by the countable collection of values $\nu(\uparrow x)$, for $x \in M$
- ν(↑x) is the probability of seing x at the "beginning" of a random infinite execution

For a concurrent system (\mathcal{M}, X, \bot) :

A Markov measure is a collection (ν_α)_{α∈X} of probability measures on ∂M such that:

 $\forall \alpha \in X \quad \forall x \in \mathcal{M} \quad \nu_{\alpha}(\uparrow x) > 0 \iff \alpha \cdot x \neq \bot$

and satisfying the chain rule: $\forall \alpha \in X \quad \forall x, y \in \mathcal{M}$ $\nu_{\alpha}(\uparrow(x \cdot y)) = \nu_{\alpha}(\uparrow x)\nu_{\alpha \cdot x}(\uparrow y)$

For a concurrent system (\mathcal{M}, X, \bot) :

► a Markov measure is a collection (\u03c6\u

 $\forall \alpha \in X \quad \forall x \in \mathcal{M} \quad \nu_{\alpha}(\uparrow x) > 0 \iff \alpha \cdot x \neq \bot$

and satisfying the chain rule: $\forall \alpha \in X \quad \forall x, y \in \mathcal{M}$ $\nu_{\alpha}(\uparrow(x \cdot y)) = \nu_{\alpha}(\uparrow x)\nu_{\alpha \cdot x}(\uparrow y)$

- Question 1: do Markov measures always exist?
- Question 2: determine all of them
- Question 3: how to simulate a given Markov measure?

Reformulation

The valuation associated to the Markov measure ν is the family $f = (f_{\alpha})_{\alpha \in X}$ of functions $f_{\alpha} : \mathcal{M} \to \mathbb{R}_{\geq 0}$ defined by

$$f_{\alpha}(x) = \nu_{\alpha}(\uparrow x)$$

Reformulation

The valuation associated to the Markov measure ν is the family $f = (f_{\alpha})_{\alpha \in X}$ of functions $f_{\alpha} : \mathcal{M} \to \mathbb{R}_{\geq 0}$ defined by

$$f_{\alpha}(x) = \nu_{\alpha}(\uparrow x)$$

The functions f_{α} satisfy:

1)
$$f_{\alpha}(x) > 0 \iff \alpha \cdot x \neq \bot$$

2) $f_{\alpha}(x \cdot y) = f_{\alpha}(x)f_{\alpha \cdot x}(y)$
 $\implies f_{\alpha}(a \cdot b \cdot c) = f_{\alpha}(b)f_{\alpha \cdot a}(b)f_{\alpha \cdot a \cdot b}(c)$

f is determined by the *finite* collection of parameters

$$\lambda_{\alpha}(a) = f_{\alpha}(a), \qquad (\alpha, a) \in X \times \Sigma$$

Reformulation

The valuation associated to the Markov measure ν is the family $f = (f_{\alpha})_{\alpha \in X}$ of functions $f_{\alpha} : \mathcal{M} \to \mathbb{R}_{\geq 0}$ defined by

$$f_{\alpha}(x) = \nu_{\alpha}(\uparrow x)$$

Conversely: What are the normalization conditions on (λ_α(a))_{(α,a)∈X×Σ} for the associated valuation f to be probabilistic (i.e., induced by some probability measure)?

In case of a trace monoid with the trivial action $\{*\} \times \mathcal{M} \to \{*\}$ (no state, no constraint)

The valuation f is a single function $f : \mathcal{M} \to \mathbb{R}_{>0}$ satisfying:

$$\forall x, y \in \mathcal{M} \quad f(x \cdot y) = f(x)f(y)$$

and determined by the collection $(f(a))_{a \in \Sigma}$

$$f(a_1 \cdot \ldots \cdot a_k) = f(a_1) \ldots f(a_k)$$

The associated probability measure is said to be *memoryless* (rather than *Markov*)

Given a function $f : \mathcal{M} \to \mathbb{R}_{>0}$, its *Möbius* transform is the function $h : \mathscr{C} \to \mathbb{R}$

$$orall \gamma \in \mathscr{C} \quad h(\gamma) = \sum_{\gamma' \in \mathscr{C} \, : \, \gamma \leq \gamma'} (-1)^{|\gamma'| - |\gamma|} f(\gamma')$$

where \mathscr{C} is the (finite) set of *commutation cliques* of \mathcal{M} and then the *Möbius inversion formula* holds:

$$\forall \gamma \in \mathscr{C} \quad f(\gamma) = \sum_{\gamma' \in \mathscr{C} : \gamma \leq \gamma'} h(\gamma')$$

Normal form of traces

• A pair (γ, γ') of cliques is *normal*, denoted $\gamma \rightarrow \gamma'$, if:

$$\forall z \in \gamma' \quad \exists y \in \gamma \quad \neg(y \parallel z)$$

Normal form of traces

For every trace x there exists a unique integer k ≥ 0 and a unique sequence (c₁,..., c_k) of cliques such that

1)
$$c_i \rightarrow c_{i+1}$$
 2) $x = c_1 \cdot \ldots \cdot c_k$

- The same works for infinite traces
- If ∂M is equipped with a probability measure ν, then the sequence (C_i)_{i≥1} is a random process (every C_i is a finite random variable)

Proposition

If ν is a probability measure on ∂M and $f(x) = \nu(\uparrow x)$, then the law of C_1 is h, the Möbius transform of f:

$$u(\mathcal{C}_1=\gamma)=\sum_{\gamma'\in \mathscr{C}:\; \gamma\leq \gamma'}(-1)^{|\gamma'|-|\gamma|}f(\gamma')$$

Consequence If f(a) = r for all $a \in \Sigma$, then $f(x) = r^{|x|}$ total probability law for C_1 : $\sum_{\gamma \in \mathscr{C}} \nu(C_1 = \gamma) = 1$ yielding $\mu(r) = 0$ (Möbius polynomial of \mathcal{M})

Actually: *r* must be the root of **smallest modulus** of $\mu(t)$, which is unique and in (0, 1)

Example

ļ

$$\mathcal{M} = \langle a_0, \dots, a_4 \mid a_i a_j = a_j a_i \quad |i - j| \mod 5 \ge 2 \rangle$$
$$u(t) = 1 - 5t + 5t^2 \quad \rightarrow r = \underbrace{\frac{5 \pm \sqrt{5}}{10}}_{\text{both in } (0, 1)} \rightarrow r = \frac{5 - \sqrt{5}}{10}$$

Theory: probabilistic trace monoids Law of the first clique for the uniform measure on $\mathcal{M} = \langle a, b, c, d \mid ac = ca, ad = da, bd = db \rangle$

$$\mu(t) = 1 - 4t + 3t^2 \quad \rightarrow r = \frac{1}{3}$$

$$h(a) = f(a) - f(a \cdot c) - f(a \cdot d) = r - 2r^{2} = \frac{1}{9}$$
$$h(b) = f(b) - f(b \cdot d) = r - r^{2} = \frac{2}{9}$$
$$h(a \cdot c) = f(a \cdot c) = r^{2} = \frac{1}{9}$$

$\gamma\in \mathscr{C}$	a	b	с	d	а·с	a · d	b · d
$h(\gamma)$ (proba of $C_1 = \gamma$)	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$f(\gamma)$ (proba of $C_1 \geq \gamma$)	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

Theory: probabilistic concurrent systems

For concurrent systems, an extension of the previous techniques works in connection with

- linear algebra
- analytic combinatorics