Branching pomsets and event structures

Luc Edixhoven^{1,2}

Sung-Shik Jongmans¹

José Proenca³

llaria Castellani⁴

¹Open University of the Netherlands ²LIACS, Leiden University

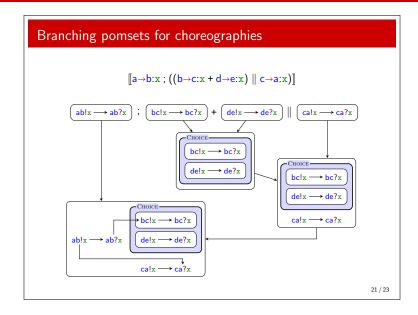
³CISTER, ISEP, Polytechnic Institute of Porto ⁴INRIA, Université Côte d'Azur

RaPS 2024

Branching pomsets for choreographies

Luc Edixhoven^{1,2} Guillermina Cledou^{3,4}

Sung-Shik Jongmans^{1,2} José Proença⁵


¹ Open University of the Netherlands ² CWI

³ HASLab, INESC TEC ⁴ University of Minho

⁵ CISTER, ISEP, Polytechnic Institute of Porto

ICE 2022

1/23

Conclusions and future work

Summary

- Branching pomsets
- Compact for both concurrency and choice
- Can express the same behaviour as choreographies


Future work

- Framework improvements: *n*-ary choices, partial order, loops
- Static analysis: realisability

https://lmf.di.uminho.pt/b-pomset/

23 / 23

"What about event structures?"

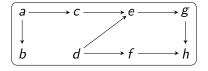
Branching pomsets and event structures (oral communication)

<u>Luc Edixhoven</u>^{1,2} Sung-Shik Jongmans^{1,2}

José Proença³ Ilaria Castellani⁴

¹Open University of the Netherlands ²CWI

³CISTER, ISEP, Polytechnic Institute of Porto ⁴INRIA, Université Côte d'Azur


ICE 2023

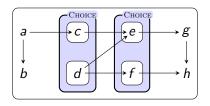
Outline

- Branching pomsets: a generic model for concurrency
- Event structures: a brief overview of the landscape
- Comparison: relative expressiveness

Branching pomsets and event structures

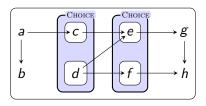
Basis: partially ordered multisets / pomsets (Pratt 1986)

- a <u>set of events</u>
 above: {a, b, c, d, e, f, g, h}
- a <u>partial order</u> on the events
 above: the reflexive and transitive closure of the arrows
- a <u>labelling function</u> from events to some set of labels above: omitted / identity (irrelevant for this talk)

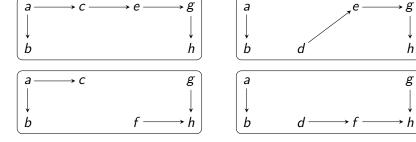

Branching pomsets and event structures

Extension: choices

- expressing choices with pomsets requires a set of pomsets
- with many choices, this set may become exponentially large
- solution: add a representation of choices

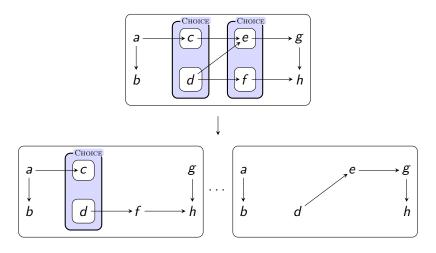

Result: a set of pomsets as a single, compact object

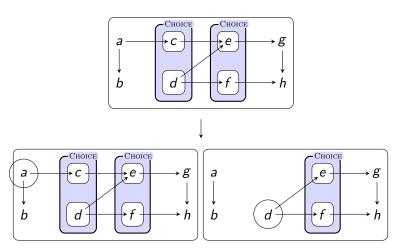
Choice model: branching structure



- add <u>branching structure</u>; a tree whose leaves are the events above: $\{a, b, g, h, \mathcal{C}_1, \mathcal{C}_2\}$, (visualised as nested boxes) where $\mathcal{C}_1 = \{\{c\}, \{d\}\}$ and $\mathcal{C}_2 = \{\{e\}, \{f\}\}$
- replace the partial order with a <u>precedence relation</u>, whose reflexive and transitive closure is a partial order

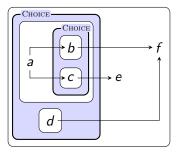
above: the arrows


For comparison: the corresponding set of pomsets

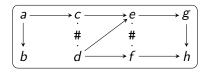

Semantics

- should be consistent with that of the corresponding set of pomsets
- formalised using two relations: refining and enabling

Semantics: refining \Rightarrow resolving any number of choices


Semantics: enabling (followed by firing) \Rightarrow refining s.t. the chosen event is minimal and top-level, resolving no more than necessary

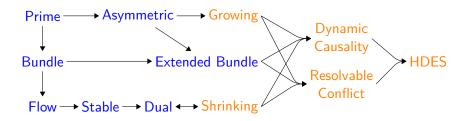
Semantics: enabling (followed by firing) \Rightarrow refining s.t. the chosen event is minimal and top-level, resolving no more than necessary



Also: nested choices

Nielsen, Plotkin and Winskel (1981)

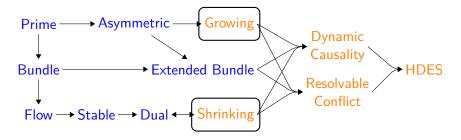
Choice model: conflict relation



 add <u>conflict relation</u> #; two conflicting events may not occur together in the same execution

above:
$$\{(c, d), (e, f)\}$$

 most classes of event structures define variations on causality and/or conflicts


Landscape (partial): static and dynamic classes of event structures

Arrows represent (strict) inclusion in terms of expressiveness

Figure: Arbach, Karcher, Peters and Nestmann, Dynamic causality in event structures (2018)

Landscape (partial): static and dynamic classes of event structures

Arrows represent (strict) inclusion in terms of expressiveness

Figure: Arbach, Karcher, Peters and Nestmann, Dynamic causality in event structures (2018)

Most relevant for this talk: growing and shrinking causality \Rightarrow dynamically adding and removing causalities

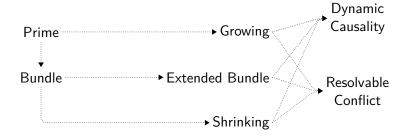
Where it all begins: prime event structures

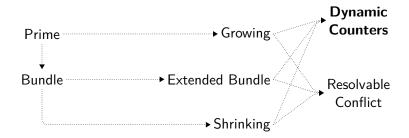
- partially ordered causality relation
- symmetric conflict relation
- conflict hereditariness: events "inherit" conflicts from their predecessors

Furthermore: an event may not have conflicting causes.

Consequently, limited in expressiveness / compactness. Roughly two main lines of extensions in our part of the landscape.

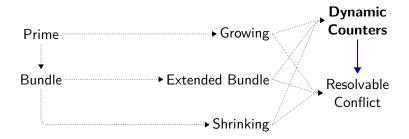
Path: disabling currently enabled events


- (standard) conflict relation a # b: if one of a and b happens, then the other is forbidden
- asymmetric conflict relation a ~ b: if a happens first then b
 may still happen, but if b happens first then a is forbidden.
- growing causality relation $a \triangleright [b \rightarrow c]$: a happening will make c causally dependent on b (i.e., add an arrow from b to c)

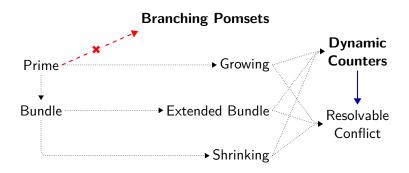

Path: enabling currently disabled events

- (standard) causality relation $a \le b$: b may not happen before a
- disjunctive causality (<u>bundle</u>, <u>dual</u>) $\{a_1, \ldots, a_n\} \mapsto b$: b may not happen before *some* a_i has happened
 - The a_i may then be required to be in pairwise conflict, depending on the class of event structures.
- enabling relation $\{a_1, \ldots, a_n\} \vdash b$ (stable): b is enabled by the set of events $\{a_1, \ldots, a_n\}$
- <u>shrinking</u> causality relation $a \lhd [b \to c]$: a happening will make c causally independent from b (i.e., remove any arrow from b to c)

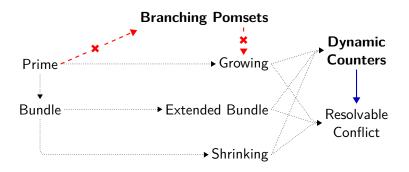
Combining paths:


- <u>extended bundle</u> event structures: disjunctive causality and asymmetric conflict
- dynamic causality event structures: both growing and shrinking causality
- event structures for resolvable conflict: raises enabling to configurations; $\{a_1, \ldots, a_n\} \vdash \{b_1, \ldots, b_m\}$
- higher-order dynamic causality event structures: higher-order dynamic causality relation, and generalisation to sets of causes

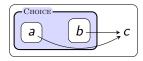
Dynamic causality with counters: replaced dynamic causality event structures with a new variant with nice property; the order of events is irrelevant for the resulting causal state

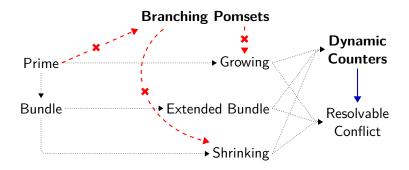

As a result: uniformly defined semantics for all shown classes

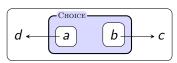
Generic proof: inclusion in event structures for resolvable conflict of any class of event structures where the causal state is order-independent, including dynamic counters

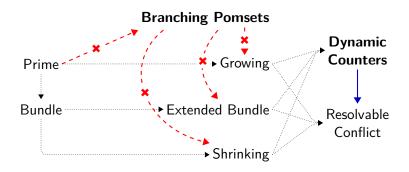

Branching Pomsets Prime Growing Growing Counters Extended Bundle Resolvable Conflict

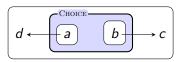
Next up: branching pomsets

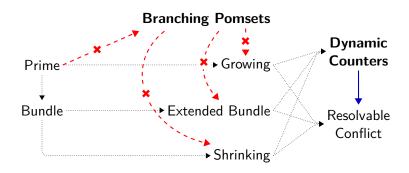


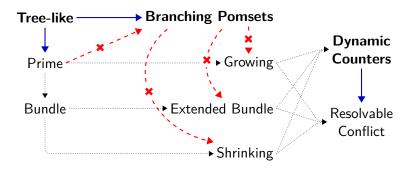

Non-inclusion: not all prime event structures expressible as branching pomsets — would need overlapping boxes



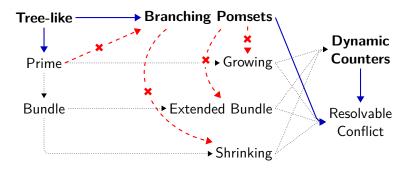

Non-inclusion: not all branching pomsets expressible as growing causality event structures — would need disjunctive causality

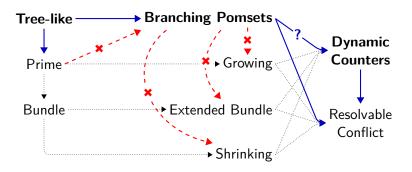



Non-inclusion: not all branching pomsets expressible as shrinking causality event structures — c can be disabled



Non-inclusion: not all branching pomsets expressible as extended bundle event structures — c can be disabled and then re-enabled




Consequently: branching pomsets incomparable with prime, growing and shrinking causality, and extended bundle event structures (and everything in between)

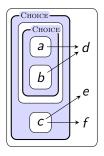
Inclusion: subset of branching pomsets, dubbed *tree-like*, can be expressed as prime event structures

Inclusion: same generic proof as for event structures also holds for branching pomsets; they can all be expressed as event structures for resolvable conflict (and consequently as HDESs)

Inclusion conjecture: dynamic causality event structures with counters may be powerful enough to express all branching pomsets; no proof yet

Conclusions and future work

Summary


- branching pomsets as a generic model for concurrency
- comparison with various classes of event structures
- interesting behaviour: incomparable with most, included in some more expressive classes of dynamic event structures

Future work

- proving or disproving the dynamic counters conjecture
- study the expressiveness of branching pomsets with overlapping boxes
- expand static analysis of branching pomsets

Dynamic causality event structures

Branching pomsets are **not** included in dynamic causality event structures (without counters).

Higher-dimensional automata

- Event structures for resolvable conflict are equally expressive as Petri nets (van Glabbeek and Plotkin, 2004)
- Petri nets are expressible as HDAs (van Glabbeek, 2006)