Hyper Partial Order Logic

B. Bérard ${ }^{1}$, S. Haar ${ }^{2}$, L. Hélouët ${ }^{3}$
${ }^{1}$ LIP6, Paris,
${ }^{2}$ INRIA Paris-Saclay
${ }^{3}$ INRIA Rennes,

FSTTCS'18, December $10-14,2018$
RAPS 2024, April, $24^{\text {th }} 2024$

Motivations

Non Interference
$\Sigma=\Sigma_{\text {low }} \uplus \Sigma_{h}$

$\mathcal{L}\left(\mathcal{O}_{\text {low }}(S)\right) \subseteq \mathcal{L}\left(\mathcal{O}_{\text {low }}\left(S \backslash \Sigma_{h}\right)\right)$

$$
\begin{aligned}
& \forall \rho_{1} \cdot h . \rho_{1}^{\prime}, \exists \rho_{2} \in \sigma_{\text {loon }}^{*}, \\
& \mathcal{O}_{\text {low }}\left(\rho_{1} \cdot h . \rho_{1}^{\prime}\right)=\mathcal{O}_{\text {low }}\left(\rho_{2}\right)
\end{aligned}
$$

Pb : cannot be expressed with a LTL, CTL property.

Mantel's framework
Comparison of
language closures (projec-
tions, morphisms,...)
[Mantel00] [D'Souza11, 16]

Hyperproperties
Properties of sets of traces
[Clarkson14, Schneider 10]

$$
\mathcal{L}\left(\mathcal{O}_{\text {low }}(S)\right) \subseteq \mathcal{L}\left(\mathcal{O}_{\text {low }}\left(S \backslash \Sigma_{h}\right)\right)
$$

$$
\begin{aligned}
& \forall \rho_{1} \cdot h . \rho_{1}^{\prime}, \exists \rho_{2} \in \sigma_{l o w}^{*}, \\
& \mathcal{O}_{\text {low }}\left(\rho_{1} \cdot h \cdot \rho_{1}^{\prime}\right)=\mathcal{O}_{\text {low }}\left(\rho_{2}\right)
\end{aligned}
$$

Pb : cannot be expressed with a LTL, CTL property.

Non Interference
$\Sigma=\Sigma_{\text {low }} \uplus \Sigma_{h}$

Mantel's framework
Comparison of Alur's framework: CTL~
language closures (projec- CTL
tions, morphisms,...) + a relation on equivalent
[Mantel00] [D'Souza 11, 16]
events
[Alur07]

$$
\begin{array}{ll}
& o p_{1}(\mathcal{L}(S)) \subseteq o p_{2}(\mathcal{L}(S)) \\
\wedge & o p_{3}(\mathcal{L}(S)) \subseteq o p_{4}(\mathcal{L}(S)) \\
\wedge & \cdots
\end{array}
$$

Hyperproperties
Properties of sets of traces
[Clarkson14, Schneider10]
$\mathcal{L}\left(\mathcal{O}_{\text {low }}(S)\right) \subseteq \mathcal{L}\left(\mathcal{O}_{\text {low }}\left(S \backslash \Sigma_{h}\right)\right)$

$$
\begin{aligned}
& \forall \rho_{1} \cdot h . \rho_{1}^{\prime}, \exists \rho_{2} \in \sigma_{l o w}^{*}, \\
& \mathcal{O}_{\text {low }}\left(\rho_{1} \cdot h . \rho_{1}^{\prime}\right)=\mathcal{O}_{\text {low }}\left(\rho_{2}\right)
\end{aligned}
$$

Pb : cannot be expressed with a LTL, CTL property.

Local Logics

$\mathcal{O}_{\text {low }}$ projection on events with label in $\{a, b\}$.

Interleaved setting

Formula of the form $\phi::=X\left(p_{a} \wedge X p_{b}\right)$ does not characterize O_{1}

Partial order setting

Address the shape of causal ordering among events in a single partial order! LD 0

Local Logics

$\mathcal{O}_{\text {low }}$ projection on events with label in $\{a, b\}$.

$\mathcal{O}\left(O_{1}\right): \quad e_{2} \bullet b$
$\mathcal{O}\left(\mathrm{O}_{2}\right):$
$\mathcal{O}_{\text {low }}$
$f_{1} \bullet a \quad f_{2} \bullet b$

Interleaved setting :

Formula of the form $\phi::=X\left(p_{a} \wedge X p_{b}\right)$ does not characterize O_{1}
Partial order setting

Address the shape of causal ordering among events in a single partial order! LD 0

Local Logics

$\mathcal{O}_{\text {low }}$ projection on events with label in $\{a, b\}$.

Interleaved setting :

Formula of the form $\phi::=X\left(p_{a} \wedge X p_{b}\right)$ does not characterize O_{1}
Partial order setting

$$
O, e \models \lambda(e)=a \wedge \exists f, e \prec f, \lambda(f)=b
$$

Address the shape of causal ordering among events in a single partial order! LD $_{0}$ [Meenakshi04], TCL $^{-}$[Peled00],...

Outline

HYPOL : an Hyper Partial Order Logic

Part 1 : Hypol

- Partial orders, template
- Partial observations
- Hypol : Syntax \& Semantics
- Satisfiability
- Example : causal non-interference

Part 2 : Model Checking on Petri nets processes

- Unfolding \& processes
- A grammar for unfolding
- Execution graphs
- From Hypol to MSO
- Observable nets

LPO over Σ
$O=(E, \leq, \lambda)$

- E is a set of events,
- $\leq \subseteq E \times E$ partial order,
- $\lambda: E \rightarrow 2^{\Sigma}$ labeling

Definition : Isomorphism

$O=(E, \leq, \lambda)$ and
$O^{\prime}=\left(E^{\prime}, \leq^{\prime}, \lambda^{\prime}\right)$ are
isomorphic ($O \equiv O^{\prime}$) iff
$\exists h: E \rightarrow E^{\prime}$ such that
$e \leq e^{\prime} \Longleftrightarrow h(e) \leq^{\prime} h\left(e^{\prime}\right)$
and
$\lambda(e)=\lambda^{\prime}(h(e))$.

LPO over Σ
$O=(E, \leq, \lambda)$

- E is a set of events,
- $\leq \subseteq E \times E$ partial order,
- $\lambda: E \rightarrow 2^{\Sigma}$ labeling

Template Matching

$O=(E, \leq, \lambda)$ and
$T=\left(E_{T}, \leq_{T}, \lambda_{T}\right)$
O matches T iff
$\exists h \subseteq E, h: H \rightarrow E_{T}$ such that:

- $\lambda_{T}(h(e)) \subseteq \lambda(e)$,
- $e<_{T} e^{\prime}$ implies $h^{-1}(e)<h^{-1}\left(e^{\prime}\right)$.

Observation function

mapping $\mathcal{O}: \mathcal{L P O}(\Sigma) \rightarrow \mathcal{L} P O\left(\Sigma^{\prime}\right)$, representing the visible part of the system.

Observation : examples

$\mathcal{O}_{1}(O)$: projection on events that carry label a or b,
$\mathcal{O}_{2}(O)$: restriction of \leq to events with an a
Main idea : model the observation power of an intruder.

- A, Σ atomic propositions
- \mathcal{T} finite set of templates over A,
- Obs finite set of observation functions

$$
\begin{aligned}
\phi::= & \operatorname{true}|\neg \phi| \phi_{1} \vee \phi_{2} \\
& \mid \text { match }(\mathcal{O}, T, f) \\
& \left|E X_{D, \mathcal{O}} \phi\right| E X_{\equiv, \mathcal{O}} \phi \\
& \left|\phi_{1} E U_{D, \mathcal{O}} \phi_{2}\right| E G_{D, \mathcal{O}} \phi
\end{aligned}
$$

where $D \subseteq A, T \in \mathcal{T}, f$ is an event of T, and $\mathcal{O} \in \mathcal{O} b s$

Evaluation of formulas

Formulas are evaluated over a set \mathcal{W} of LPOs over Σ,
\mathcal{W} satisfies ϕ iff $\exists O=(E, \leq, \lambda) \in W, e \in \min (O)$,
$O, e \models \phi$

Satisfiability

A formula ϕ is satisfiable iff there exists an universe \mathcal{W} such that $\mathcal{W} \models \phi$
Satisfiability problem : Given ϕ, is it satisfiable by some universe \mathcal{W} ?

Model checking

A model M satisfies a formula ϕ iff the universe \mathcal{W}_{M} of its executions satisfies ϕ
Model checking problem : Given M, ϕ, does $\mathcal{W}_{M} \models \phi$?

Semantics : Matching

$O, e \models \operatorname{match}\left(\mathcal{O}_{1}, T, f\right)$
iff

- one can match T in the observation $\mathcal{O}_{1}(\downarrow e)$ (causal past of $\left.e\right)$.
- with at least a witness mapping $h_{e, f}$ associating f with e

Semantics : $E X_{D, \mathcal{O}}$ and $E U_{D, \mathcal{O}}$

$$
O, e \models \phi E U_{D, \mathcal{O}} \psi
$$

$$
O, e \models E X_{D, \mathcal{O}} \phi
$$

The next observed event satisfies ϕ

There exists an event in the future that satisfies ϕ

O

O^{\prime}
$O, e \models E X_{\equiv, \mathcal{O}} \phi$

O^{\prime}

$$
O, e \models E X_{\equiv, \mathcal{O}} \phi
$$

$O, e=E X_{\equiv, \mathcal{O}} \phi$

$O, e \models E X_{\equiv, \mathcal{O}} \phi$

$O, e \models E X_{\equiv, \mathcal{O}} \phi$

O

O^{\prime}

$$
O, e \models E X_{\equiv, \mathcal{O}} \phi
$$

There exists another order O^{\prime} in \mathcal{W} and an event f such that

- $O^{\prime}, f \models \phi$
- \mathcal{O} cannot distinguish the causal past of e and f

$$
\mathcal{O}(\uparrow e) \equiv \mathcal{O}(\uparrow e)
$$

An example : causal Non-Interference

$$
\text { Let } \Sigma=\Sigma_{h i g h} \uplus \Sigma_{l o w} \text { with } \Sigma_{h i g h}=\{h\} \text { and } \Sigma_{l o w}=\{a, b\}
$$

$\mathcal{O}_{\text {low }}$ projection of LPOs on events with label in $\Sigma_{\text {low }}$.

Causal Non-Interference

$$
\begin{aligned}
& T_{\mathrm{h} \leq a}=\bullet^{h} \longrightarrow \bullet^{a} \\
& \operatorname{Pred}_{h}::=\bigvee_{a \in \Sigma} \operatorname{match}\left(\mathcal{O}_{\mathrm{h}, a}, T_{\mathrm{h} \leq a}\right) \\
& \phi_{C N I}::=A G_{\Sigma, i d}\left(\lambda_{\in \Sigma_{\text {high }}} \vee \operatorname{Pred}_{h} \Longrightarrow E X_{\equiv, \mathcal{O}_{\text {low }}}\left(\lambda_{\notin \Sigma_{\text {high }}} \wedge \neg \operatorname{Pred}_{h}\right)\right)
\end{aligned}
$$

If a system satisfies $\phi_{C N}$, then an intruder with observation capacity $\mathcal{O}_{\text {low }}$ cannot differentiate runs with/without h.

In particular, a system with behaviors $\mathcal{W}=\left\{O_{1}, O_{2}\right\}$ does not satisfy $\phi_{C N}$ and is not secure

Theorem

Satisfaibility of Hypol is undecidable

A PCP encoding :

$I=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
$\left(x_{i}, y_{i}\right)$ pair of words in A^{*}.
$\exists i_{1} \ldots i_{k}$ such that
$x_{i_{1}} \ldots x_{i_{k}}=y_{i_{1}} \ldots y_{i_{k}}$?

PCP instance I has a solution if $\exists O, e$ such that $O, e \models \phi_{I}$

Part 2 : Model Checking on Petri nets Processes

Definition

A labeled Petri net is a tuple $\mathcal{N}=\left(P, T, F, M_{0}\right)$

- P : set of places,
- T set of transitions
- $F \subseteq P \times T \cup T \times P$ flow relation,
- $M_{0} \in \mathbb{N}^{P}$ is the initial marking.
- $\lambda: T \rightarrow \Sigma$

$W_{1} \in P R(\mathcal{N})$

$W_{1} \in \operatorname{Proc}(\mathcal{N})$

$W_{1} \in \operatorname{Proc}(\mathcal{N})$

\mathcal{N}
$W_{1} \in \operatorname{Proc}(\mathcal{N})$

\mathcal{N}
$W_{1} \in \operatorname{Proc}(\mathcal{N})$
$O_{1}=\operatorname{Ord}\left(W_{1}\right)$

Model checking Hypol on Petri nets

Let \mathcal{N} be a Petri net, $P R(\mathcal{N})$ its set of processes
Let ϕ be an hypol formula :
$\mathcal{N} \models \phi$ iff $\exists O \in \operatorname{Ord}(P R(\mathcal{N})), e \in \min (O)$ such that $O, e \models \phi$
Unfortunately

Undecidability

Model checking of Hypol properties for (safe) Petri nets is undecidable.

Why : PCP encoding. For every instance I of PCP, can build a net \mathcal{N}_{I} such that $\mathcal{N}_{I} \models \phi_{I}$ iff this instance of PCP has a solution.

Definition

\mathcal{N} is observable (wrt $\mathcal{O}_{1}, \ldots \mathcal{O}_{k}$) iff
i) $\forall \mathcal{O}_{i}$, every cyclic behavior produces something observable by \mathcal{O}_{i} at every iteration,
ii) $\forall \mathcal{O}_{i}$, choices eventually appear in observation after k_{c} steps,
iii) $\forall \mathcal{O}_{i}$, there exists a bound on the size of parallel threads which have identical observation

Process Semantics : model checking

\mathcal{O}_{1} : projection on events with labels in $\{b, d, e\}$.
i) : \mathcal{N} does not remain unobservable forever

Process Semantics : model checking

\mathcal{O}_{1} : projection on events with label a.
$i)+i i)+i i i) \Longrightarrow$ an event e is always equivalent to a bounded number of events in a bounded past / parallel part

Theorem

Hypol model-checking is decidable for observable nets.

- show that processes of a nets can be seen as a regular graph $\mathcal{G}_{\mathcal{N}}^{\omega}$
- isomorphism up to observation \mathcal{O}_{i} can be encoded as an additional relation \xrightarrow{i} : gives a new (non regular) graph $G_{\mathcal{N}}$
- Show that Hypol properties of safe nets can be encoded as MSO properties
- Identify a class of K-layered nets where $G_{\mathcal{N}}$ is regular Hypol decidable on this class!
- Show that observable nets belong to this class

Branching processes

Branching processes "unfold" Petri nets

Definition (Branching
 Process)

A branching process of $\mathcal{N}=\left(P, T, F, M_{0}, \lambda\right)$ is a triple $B R=\left(O N, \mu, \lambda^{\prime}\right)$

- $O N=\left(B, E, \hat{F}, C u t_{0}\right)$ is an occurrence net,
- μ is a homomorphism and $\forall e \in E, \lambda^{\prime}(e)=\lambda(\mu(e))$.

The unfolding of $\mathcal{N}, \mathcal{U}(\mathcal{N})$,

is the maximal branching process.
$\mathcal{U}(\mathcal{N})$ can be seen as the union of all processes of \mathcal{N}

Unfolding \& processes

Unfolding \& processes

A grammar for unfolding

Idea of the construction:
Stop unfolding when reaching a marking already drawn

Close to Complete Finite Prefixes
[McMillan95, Esparza02]

A grammar for unfolding

Idea of the construction:
Stop unfolding when reaching a marking already drawn

Close to Complete Finite Prefixes
[McMillan95, Esparza02]

A grammar for unfolding

Idea of the construction:
Stop unfolding when reaching a marking already drawn

Close to Complete Finite Prefixes

[McMillan95, Esparza02]

Graph Grammars

Theorem

One can effectively build a graph grammar $\mathcal{G}_{\mathcal{N}}$ that generates $\mathcal{U}_{\mathcal{N}}$

Interesting...

Graphs generated by graph grammars have bounded treewidth

- size of the largest vertex set in a tree decomposition of the graph
- nb. colors needed to generate a graph with a simple graph algebra MSO is decidable for graph grammars

Idea : translate ϕ to an equivalent MSO formula but ... Isomorphism cannot be expressed in MSO.

Execution Graph

An unfolding, plus explicit representation of isomorphisms

$$
G_{\mathcal{U}_{\mathcal{N}}}=\mathcal{U}_{\mathcal{N}} \uplus\left\{e \xrightarrow{i} f \mid \mathcal{O}_{i}(\downarrow e) \equiv \mathcal{O}_{i}(\downarrow f)\right\}
$$

Proposition

There exist labeled safe Petri nets and observation functions whose execution graphs are not of bounded treewidth

Theorem

For every Hypol formula ϕ and every safe Petri net \mathcal{N}, there exists an MSO formula ψ such that $\mathcal{N} \models \phi$ iff $G_{\mathcal{U}_{\mathcal{N}}} \models \psi$

Proof idea:

- $e<f, e \leq f, x \leq_{\mathcal{O}} y$ expressible as an MSO property of $G_{\mathcal{U}_{\mathcal{N}}}$.
- $\mathcal{O}_{i}(\downarrow e) \equiv \mathcal{O}_{i}(\downarrow f)$ is a simple relation $e \xrightarrow{i} f$

Then inductive construction.

Example : $\phi=E X_{D, \mathcal{O}} \phi^{\prime}$

Let x be a variable representing an event
C be a set of variable names already in use
$\operatorname{MSO}(\phi, x, C)=\exists y, x \leq_{\mathcal{O}} y \wedge M S O\left(\phi, y, C^{\prime}\right)$
with

- y is a fresh variable name (w.r.t. C and to the set $C_{x \leq \mathcal{O}}$ of variables used to encode $x \leq_{\mathcal{O}} y$)
- $C^{\prime}=C \cup\{y\} \cup C_{x \leq \mathcal{O} y}$;

From Hypol to MSO

Immediate corollaries :
Corollary
Hypol $\backslash E X_{\equiv, \mathcal{O}_{i}}$ is decidable for safe Petri nets
Proof: Equivalence edges are not used. MSO decidable for graph grammars [Courcelle90]
Checking $\mathcal{N} \models \phi=$ checking $\mathcal{G}_{\mathcal{N}} \models \operatorname{MSO}(\phi)$

Corollary

MSO is undecidable on execution graphs of safe Petri nets
Proof : Consistent with former theorems. Further $G_{\mathcal{U}_{\mathcal{N}}}$ may contain infinite grids minors (a condition for undecidability of MSO [Robertson\&Seymour91])

Observable nets \& Layeredness

Distance between events

$\operatorname{dist}(e, f)=$ maximal number of edges between $\{e, f\}$ and their common past

Balls

The $K-$ Ball of e in $\mathcal{U}_{\mathcal{N}}$ is the set

$$
\operatorname{Ball}_{K}(e)=\{f \in E \mid \operatorname{dist}(e, f) \leq K\}
$$

Equivalence decision on K-layered graphs

Definition : K-layeredness

\mathcal{N} is K-layered for observations
$\mathcal{O}_{1}, \ldots, \mathcal{O}_{q}$ iff :

- the K-ball of every event e of $\mathcal{U}_{\mathcal{N}}$ is finite
- $\forall \mathcal{O}_{i}, \operatorname{dist}(e, f)>K$ implies $e \not \equiv_{i} f$
- $e \equiv_{i} f$ can be decided from the contents of $\operatorname{Ball}_{K}(e)$ and Ball $_{K}(f)$

Proposition

Let \mathcal{N} be a K-layered safe Petri net (w.r.t. $\mathcal{O}_{1}, \ldots, \mathcal{O}_{g}$). Then, one can effectively compute a graph grammar $\mathcal{G}_{K, \mathcal{N}}$ that recognizes $G_{\mathcal{U}_{\mathcal{N}}}$

Proof idea: Hyperedges memorize K-balls of maximal events.

Equivalence decision on K-layered graphs

Corollary
Hypol model checking is decidable for K-layered nets.
Open question
Is K-layeredness decidable?
Theorem
Observable nets are K-layered for some $K \leq \max \left(2 \cdot k_{c}, 3 \cdot|T|\right)$

Corollary

Hypol model checking is decidable for Observable nets

Conclusion

Contributions

- A new partial order hyperlogic : Hypol
- Hypol Model checking decidable for K-Layered nets.
- A decidable subclass : Observable nets

Open questions

- Complexity?
- Decidability of K-layeredness?
- Unbounded Petri nets?
- Other types of regular models?

R. Alur, P. Cerný, and S. Chaudhuri.

Model checking on trees with path equivalences.
In TACAS 2007, volume 4424 of LNCS, pages 664-678. Springer, 2007.
B. Bérard, S. Haar, and L. Hélouët.

Hyper partial order logic.
Technical report, 2018.
https ://hal.inria.fr/hal-01884390.
B. Bérard, L. Hélouët, and J. Mullins.

Non-interference in partial order models.
ACM Trans. Embedded Comput. Syst., 16(2) :44:1-44:34, 2017.
M.R. Clarkson, B. Finkbeiner, M. Koleini, K.K. Micinski, M.N. Rabe, and C. Sánchez.

Temporal logics for hyperproperties.
In POST, pages 265-284, 2014.
M.R. Clarkson and F.B. Schneider.

Hyperproperties.
Journal of Computer Security, 18(6) :1157-1210, 2010.
B. Courcelle and J. Engelfriet.

Graph Structure and Monadic Second-Order Logic, a language theoretic approach. Cambridge Univ. Press, 2012.

Bruno Courcelle.
The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1) :12-75, 1990.

Bibliography

J. Engelfriet.

Branching processes of Petri nets.
Acta Inf., 28(6) :575-591, 1991.
J. Esparza, S. Römer, and W. Vogler.

An improvement of McMillan's unfolding algorithm.
Formal Methods in System Design, 20(3) :285-310, 2002.
J.A. Goguen and J. Meseguer.

Security policies and security models.
In Proc. of IEEE Symposium on Security and Privacy, pages 11-20, 1982.

A. Habel.

Hyperedge Replacement : Grammars and Languages, volume 643 of LNCS.
Springer, 1992.
P. Madhusudan and B. Meenakshi.

Beyond message sequence graphs.
In FST TCS'01 : Foundations of Software Technology and Theoretical Computer Science, volume 2245 of LNCS, pages 256-267. Springer, 2001.

H. Mantel.

Possibilistic definitions of security - an assembly kit.
In Proc. of the 13th IEEE Computer Security Foundations Workshop, (CSFW'00), pages 185-199, 2000.

K.L. McMillan.

A technique of state space search based on unfolding.
Formal Methods in System Design, 6(1) :45-65, 1995.
B. Meenakshi and R. Ramanujam.

Reasoning about layered message passing systems.
Computer Languages, Systems \& Structures, 30(3-4) :171-206, 2004.
D.A. Peled.

Specification and verification of message sequence charts.
In FORTE/PSTV'00, volume 183 of IFIP Conference Proceedings, pages 139-154. Kluwer, 2000.
N. Robertson and P.D. Seymour.

Graph minors. x. obstructions to tree-decomposition.
J. Comb. Theory, Ser. B, 52(2) :153-190, 1991.

