Théorie des langages : THL CM 4

Uli Fahrenberg

EPITA Rennes

S5 2024

Aperçu ●0000

Aperçu

Programme du cours

Aperçu

- Langages rationnels
- Automates finis
- Langages algébriques, grammaires hors-contexte, automates à pile
- Parsage LL, partie 1
- Parsage LL, partie 2
- TP 1: flex
- TP 2 : parsage LL
- Parsage LR
- TP 3, 4 : flex & bison

La dernière fois : hiérarchie de Chomsky

Une grammaire (syntagmatique): (N, Σ, P, S) :

- N, Σ : ensembles finis de variables et terminaux
- $S \in N$: le symbole initial
- $P \subseteq (N \cup \Sigma)^+ \times (N \cup \Sigma)^*$: l'ensemble de productions

type	e grammaires	productions	langages	automates
4	finis	$N o \Sigma^*$	finis	finis acycliques
3	↓ régulières	$N o \Sigma^* \cup \Sigma^* N$	\∩ réguliers	finis
2	↓ hors-contexte	$N o V^*$	∜∩ algébriques	à pile
1	↓ contextuelles	$ \alpha N\beta \rightarrow \alpha V^{+}\beta $ $ S_{0} \rightarrow S \mid \varepsilon $	∜∩ contextuels	linéairement bornés
0	↓ syntagmatiques		récursivemen énumerables	t de Turing

5/77

Aujourd'hui : parsage LL

Une grammaire hors contexte : (N, Σ, P, S) :

- N, Σ : ensembles finis de variables et terminaux
- $S \in N$: le symbole initial
- $P \subseteq N \times (N \cup \Sigma)^*$: l'ensemble de productions

But : construire des algorithmes de parsage basés sur grammaires hors-contexte

- grammaire hc $G \rightsquigarrow$ algorithme A
- A : mot w → reject / accept
- faut que A soit efficace
- dans le poly : section 6.2, chapitre 7, section 8.1

Uli Fahrenberg Théorie des langages : THL

6/77

Aujourd'hui : parsage LL

Une grammaire hors contexte : (N, Σ, P, S) :

- N, Σ : ensembles finis de variables et terminaux
- $S \in N$: le symbole initial
- $P \subseteq N \times (N \cup \Sigma)^*$: l'ensemble de productions

But : construire des algorithmes de parsage basés sur grammaires hors-contexte

- grammaire hc $G \rightsquigarrow$ algorithme $A \leftarrow YACC / bison$
- A: mot $w \rightsquigarrow \text{reject } / \text{accept } + \text{arbre de parsage}$
- faut que A soit efficace
- dans le poly : section 6.2, chapitre 7, section 8.1

Uli Fahrenberg Théorie des langages : THL

Apercu

•
$$G: S \rightarrow aSb \mid ab$$
 $L(G) = \{a^nb^n \mid n \geq 1\}$

• automate à pile standard pour
$$L(G)$$
 : $a, a/\varepsilon$ $e, S/aSb$ $e, S/ab$ $b, b/\varepsilon$

- plein de transitions spontanées, plein de non-déterminisme
- automate à pile type Greibach : $\xrightarrow{\varepsilon,\varepsilon/S} \overbrace{q_p} \xrightarrow{a,S/Sb} a,S/b \\ b,b/\varepsilon$
- o déjà mieux, mais toujours plein de non-déterminisme
- (on s'en fout de la première transition spontanée)

But : algorithmes de parsage déterministes en temps linéaire

Uli Fahrenberg Théorie des langages : THL 7/77

Dérivations

$$S \rightarrow S + T \mid T$$

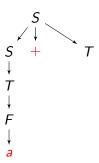
 $T \rightarrow T * F \mid F$
 $F \rightarrow (S) \mid a$

$$S \downarrow S \downarrow T$$

$$S \rightarrow S + T \mid T$$

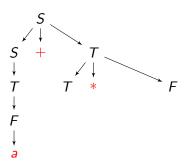
$$T \rightarrow T * F \mid F$$

 $F \rightarrow (S) \mid a$



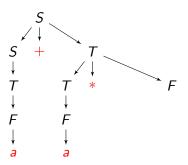
$$S \rightarrow S + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (S) \mid a$



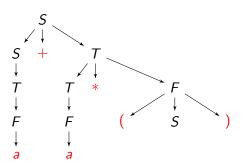
$$S \rightarrow S + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (S) \mid a$



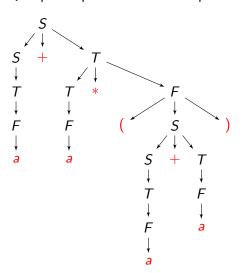
$$S \rightarrow S + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (S) \mid a$



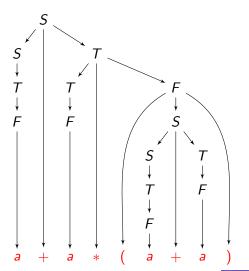
$$S \rightarrow S + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (S) \mid a$



$$S \rightarrow S + T \mid T$$

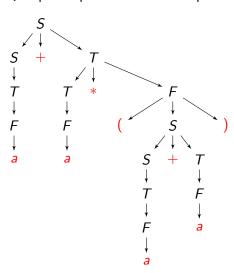
 $T \rightarrow T * F \mid F$
 $F \rightarrow (S) \mid a$



$$S \rightarrow S + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (S) \mid a$

Quelques expressions arithmétiques :



$$S \to S + T \mid T$$
$$T \to T * F \mid F$$

 $F \rightarrow (S) \mid a$

- plusieurs dérivations, même arbre :
- $S \Rightarrow S + T \Rightarrow T + T$ $\Rightarrow F + T \Rightarrow a + T \Rightarrow \dots$
- $S \Rightarrow S + T \Rightarrow S + T * F$ $\Rightarrow S + F * F \Rightarrow \dots$
- etc.
- on s'intéresse aux arbres, pas aux dérivations

Dérivations gauche

Soit *G* une grammaire hors-contexte.

Définition (6.1)

Une dérivation $S \Rightarrow \alpha_1 \Rightarrow \cdots \Rightarrow w$ dans G est dite gauche si à chaque pas $\alpha_i \Rightarrow \alpha_{i+1}$ c'est la variable la plus à gauche dans α_i qui est réécrit.

par analogie, aussi « dérivation droite »

Théorème (6.3)

Pour chaque $w \in L(G)$ il existe une dérivation gauche $S \Rightarrow^* w$.

Ambiguité

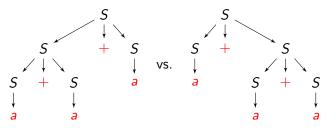
Exemple : $G: S \rightarrow S + S \mid a$

deux dérivations gauche différents :

•
$$S \Rightarrow S + S \Rightarrow S + S + S \Rightarrow a + S + S \Rightarrow a + a + S \Rightarrow a + a + a$$

•
$$S \Rightarrow S + S \Rightarrow a + S \Rightarrow a + S + S \Rightarrow a + a + S \Rightarrow a + a + a$$

correspondant à deux arbres différents :



- (a + a) + a vs. a + (a + a)
- heureusement l'addition est associative!

Associativité de l'addition (ou pas)

Addition des Int32:

$$x = 2^{31} - 1$$
 $y = 1$ $z = -1$
 $x + (y + z) = x + 0 = 2^{31} - 1$
 $(x + y) + z = 0 + z = -1$

overflow!

Ambiguité

Définition (6.5)

Une grammaire hors-contexte est ambiguë s'il existe $w \in L(G)$ admettant deux dérivations gauches différents.

- équivalent : « ... admettant deux arbres de dérivation différents »
- deux arbres différents ⇒ deux sémantiques différents
- ⇒ pour le parsage, faut des grammaires non-ambiguës

Théorème (sans démonstration ici)

Il existe des langages algébriques qui ne peuvent être engendrés que par des grammaires ambiguës.

- par exemple $L = \{a^m b^n c^p \mid m = n \text{ ou } n = p\}$
- un langage intrinsèquement ambigu
- on ne peut pas traiter des langages intrinsèquement ambigus

Uli Fahrenberg

22/77

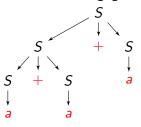
Fin à l'ambiguité

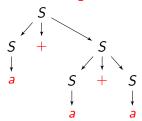
Dans la pratique il existe toujours des grammaires hc non-ambiguës.

Exemple:

•
$$S \rightarrow S + S \mid a \quad \rightsquigarrow \quad S \rightarrow S + a \mid a$$

• engendre le même langage, avec associativité à gauche





•
$$S \rightarrow S + T \mid T$$
; $T \rightarrow T * F \mid F$; $F \rightarrow (S) \mid a$: même chose

Uli Fahrenberg Théorie des langages : THL

23/77

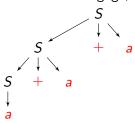
Fin à l'ambiguité

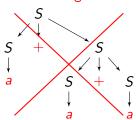
Dans la pratique il existe toujours des grammaires hc non-ambiguës.

Exemple:

•
$$S \rightarrow S + S \mid a \quad \rightsquigarrow \quad S \rightarrow S + a \mid a$$

• engendre le même langage, avec associativité à gauche





•
$$S \rightarrow S + T \mid T$$
; $T \rightarrow T * F \mid F$; $F \rightarrow (S) \mid a$: même chose

Uli Fahrenberg Théorie des langages : THL

Parsage LL(1)

Parsage

Problème de parsage

Pour une grammaire ho G, construire un algorithme qui :

- pour un mot w, decide si $w \in L(G)$
- et dans le cas $w \in L(G)$, retourne l'arbre de dérivation
- arbre de dérivation de $w \triangleq sémantique$ de w

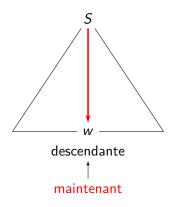
Nos algorithmes de parsage devrait

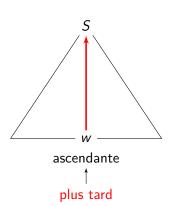
- pouvoir traiter des grammaires non-ambiguës
- avoir une complexité linéaire en taille d'entrée
- lire w de gauche à droite sans retour arrière

Uli Fahrenberg

Théorie des langages : THL

Approches





Parsage LL(1)

Uli Fahrenberg

$$S
ightarrow ext{if } E ext{ then } S ext{ fi} \quad ext{(1)}$$

$$E \rightarrow \text{true}$$
 (3)

Mot d'entrée :

Arbre construit :

if true then if false then echo fi fi

S

$$E \rightarrow \text{true}$$
 (3)

Mot d'entrée :

Arbre construit:

if true then if false then echo fi fi

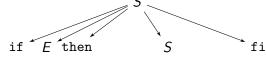
S

$$S \rightarrow \text{if } E \text{ then } S \text{ fi}$$
 (1)

$$E \rightarrow \text{true}$$
 (3)

Mot d'entrée :

Arbre construit:

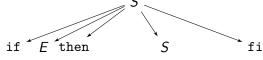


$$S \rightarrow \text{if } E \text{ then } S \text{ fi}$$
 (1)

$$E \rightarrow \text{true}$$
 (3)

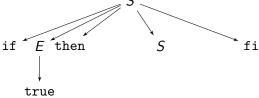
Mot d'entrée :

Arbre construit:



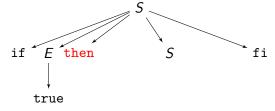
Mot d'entrée :

Arbre construit:



Mot d'entrée :

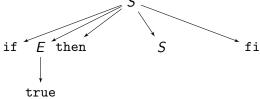
Arbre construit:



$$S
ightarrow ext{if } E ext{ then } S ext{ fi} \qquad (1) \qquad \qquad E
ightarrow ext{true} \qquad (3) \ | ext{ echo} \qquad (2) \qquad \qquad | ext{ false} \qquad (4)$$

Mot d'entrée :

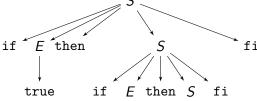
Arbre construit :



$$S
ightarrow ext{if } E ext{ then } S ext{ fi} \qquad (1) \qquad \qquad E
ightarrow ext{true} \qquad (3) \ | ext{ echo} \qquad \qquad (4)$$

Mot d'entrée :

Arbre construit :



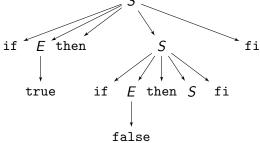
$$S
ightarrow ext{if E then S fi (1)} \qquad \qquad E
ightarrow ext{true} \qquad \qquad (3)$$
 | echo (2) | false (4)

Mot d'entrée :

Arbre construit:

35/77

if true then if $\frac{\text{false}}{\text{(4)}}$ then echo fi fi



Uli Fahrenberg Théorie des langages : THL

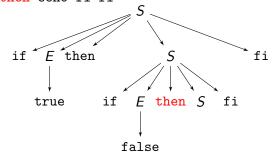
$$S
ightharpoonup$$
 if E then S fi (1) $E
ightharpoonup$ true (3) $|$ echo (2) $|$ false (4)

Mot d'entrée :

Arbre construit:

36/77

if true then if false then echo fi fi



Uli Fahrenberg Théorie des langages : THL

Exemple

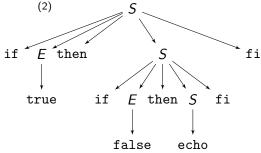
$$S
ightarrow ext{if E then S fi (1)} \qquad \qquad E
ightarrow ext{true} \qquad (3) \ | \ ext{echo} \qquad \qquad (4)$$

Mot d'entrée :

Arbre construit:

37/77

if true then if false then echo fi fi



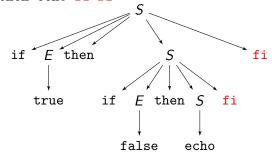
Uli Fahrenberg Théorie des langages : THL

$$S
ightarrow ext{if E then S fi} \quad (1) \qquad \qquad E
ightarrow ext{true} \qquad (3) \ | ext{ echo} \qquad \qquad (2) \qquad \qquad | ext{ false} \qquad (4)$$

Mot d'entrée :

Arbre construit:

if true then if false then echo fi fi



Uli Fahrenberg

Théorie des langages : THL

Exemple, version Greibach

$$S o$$
 if E then S fi | echo
$$E o$$
 true | false
$$\begin{array}{c} \text{if, } S/E \text{ then } S \text{ fi} \\ \text{echo, } S/\varepsilon \\ \text{true, } E/\varepsilon \\ \text{false, } E/\varepsilon \\ \text{then, then/}\varepsilon \\ \text{o une grammaire Greibach déterministe} \end{array}$$

une grammaire Greibach déterministe

état reste du mot pile if true then if false then echo fi fi q_i if true then if false then echo fi fi q_p E then S fi true then if false then echo fi fi q_p then S fi then if false then echo fi fi q_p Sfi if false then echo fi fi q_p E then S fi fi false then echo fi fi q_p then S fi fi then echo fi fi q_p q_p

Parsage LL(1)

- approche descendante
- lire le mot w de gauche à droite / Left-to-right
 - sans passer à l'arrière
- construire une dérivation gauche / Leftmost
- en accordant, à chaque pas, le premier symbole de w avec le côté droit d'une production

Exemple, encore

$$S
ightarrow ext{if } E ext{ then } S ext{ fi} \quad \mbox{(1)}$$

$$E \rightarrow \text{true}$$
 (3)

Une table de parsage :

case vide : erreur de parsage

End of file

C'est souhaitable de pouvoir expliciter la fin d'entrée.

- on utilise « \$ » comme symbole EOF ici
- if true then if false then echo fi fi\$

Pour adapter la grammaire :

- rajout d'une nouvelle variable Z
- avec production $Z \to S$ \$

End of file

C'est souhaitable de pouvoir expliciter la fin d'entrée.

- on utilise « \$ » comme symbole EOF ici
- if true then if false then echo fi fi\$

Pour adapter la grammaire :

- rajout d'une nouvelle variable Z
- avec production $Z \rightarrow S$ \$

Exemple:

$$S \rightarrow \text{if } E \text{ then } S \text{ fi}$$
 (1)

$$E \rightarrow \text{true}$$
 (3)

(4)

End of file

C'est souhaitable de pouvoir expliciter la fin d'entrée.

- on utilise « \$ » comme symbole EOF ici
- if true then if false then echo fi fi\$

Pour adapter la grammaire :

- rajout d'une nouvelle variable Z
- avec production $Z \rightarrow S$ \$

Exemple:

$$Z \rightarrow S$$
\$ (0)

$$S
ightarrow ext{if } E ext{ then } S ext{ fi} \quad (1)$$

$$E \rightarrow \text{true}$$
 (3)

FIRST

$$Z \rightarrow S$$
\$ (0)

$$S \rightarrow \text{if } E \text{ then } S \text{ fi}$$
 (1)

$$E \rightarrow \text{true}$$
 (3)

Pour construire la table de parsage, on a besoin de savoir quels terminaux peuvent apparaître à gauche d'une dérivation depuis une variable.

Définition (8.2)

Soit $A \in N$, alors $\mathsf{FIRST}(A) \subseteq \Sigma$ est defini par $\mathsf{FIRST}(A) = \{ a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw \}.$

res += FIRST(B)

def FIRST(A):
 res = {}
 foreach (A to aw):
 res += {a}
 foreach (A to Bw):

return res

FIRST

$$Z \rightarrow S$$
\$ (0)

$$S \rightarrow \text{if } E \text{ then } S \text{ fi}$$
 (1)

$$E \rightarrow \text{true}$$
 (3)

Pour construire la table de parsage, on a besoin de savoir quels terminaux peuvent apparaître à gauche d'une dérivation depuis une variable.

Définition (8.2)

Soit $A \in N$, alors $\mathsf{FIRST}(A) \subseteq \Sigma$ est defini par $\mathsf{FIRST}(A) = \{ a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw \}.$

def FIRST(A):
 res = {}

return res

FIRST

$$Z \rightarrow S$$
\$ (0)

$$S \rightarrow \text{if } E \text{ then } S \text{ fi}$$
 (1)

$$E \rightarrow \text{true}$$
 (3)

false (4)

Pour construire la table de parsage, on a besoin de savoir quels terminaux peuvent apparaître à gauche d'une dérivation depuis une variable.

Définition (8.2)

Soit $A \in N$, alors FIRST $(A) \subseteq \Sigma$ est defini par FIRST $(A) = \{a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw\}$.

```
def FIRST(A):
    res = {}
    foreach (A to aw):
        res += {a}
    foreach (A to Bw):
        res += FIRST(B)
A | FIRST(A)

Z | if, echo
S | if, echo
E | true, false
```

return res

FIRST problems

```
def FIRST(A):
    res = {}
    foreach (A to aw):
        res += {a}
    foreach (A to Bw):
        res += FIRST(B)
    return res
```

Un algorithme de point fixe

FIRST problems

```
def FIRST(A):
    res = {}
    foreach (A to aw):
        res += {a}
    foreach (A to Bw):
        res += FIRST(B)
    return res
```

Un algorithme de point fixe

- mais si $A \rightarrow Aw$?
 - récursion à gauche : on ne l'aime pas, faut éviter

FIRST problems

```
def FIRST(A):
    res = {}
    foreach (A to aw):
        res += {a}
    foreach (A to Bw):
        res += FIRST(B)
    return res
```

Un algorithme de point fixe

- mais si $A \rightarrow Aw$?
 - récursion à gauche : on ne l'aime pas, faut éviter
- ou si $A \to Bw$ et $B \Rightarrow \varepsilon$?
 - traiter avec NULL et FOLLOW, plus tard
 - pour le moment, ignorer

Algorithme LL(1)

- entrée : une grammaire hc G
- construire la table FIRST
- utiliser FIRST pour construire la TABLE de parsage :

$$\mathsf{TABLE}(A, a) = \{ n \mid \exists \alpha \in V, w \in V^* : A \xrightarrow{(n)} \alpha w, a \in \mathsf{FIRST}(\alpha) \}$$

• pour simplicité, FIRST(a) = $\{a\}$ pour tout $a \in \Sigma$

Définition

G est LL(1) si chaque TABLE(A, a) contient au maximum une production.

Uli Fahrenberg

Théorie des langages : THL

Exemple

$$\mathsf{TABLE}(A, a) = \{ n \mid \exists \alpha \in V, w \in V^* : A \xrightarrow{(n)} \alpha w, a \in \mathsf{FIRST}(\alpha) \}$$

$$Z o S$$
\$ (0) $A ext{ FIRST}(A)$
 $S o ext{ if } E ext{ then } S ext{ fi } (1)$ $Z ext{ if, echo}$
 $| ext{ echo}$ $E o ext{ true}$ (3) $E ext{ true, false}$
 $| ext{ false}$ (4)

	if	then	fi	echo	true	false	\$
Z	0			0			
S	1			2			
Ε					3	4	

Uli Fahrenberg

Dérivations

LL(1)isation

Factorisation

$$Z \rightarrow S$$
\$ (0)

$$S \rightarrow \text{echo}$$
 (3)
 $E \rightarrow \text{true}$ (4)

$$S \rightarrow \text{if } E \text{ then } S$$
 (1)
| if $E \text{ then } S \text{ else } S$ (2)

	if	then	else	echo	true	false	\$
Z	0			0			
S	1, 2			3			
Ε					4	5	

- « conflit FIRST/FIRST »
- notre grammaire n'est pas LL(1)
- solution : factorisation gauche

Factorisation gauche

Théorème (8.6)

Pour chaque grammaire hc G il existe une autre G' avec L(G) = L(G')et telle que pour chaque paire $A \to X_1 \dots X_k \mid Y_1 \dots Y_\ell$ de productions, $X_1 \neq Y_1$.

Exemple:

$$S \rightarrow \text{if } E \text{ then } S$$

| if $E \text{ then } S \text{ else } S$

devient

$$S \rightarrow \text{if } E \text{ then } SX$$

 $X \rightarrow \text{else } S \mid \varepsilon$

• attention à la production $X \to \varepsilon$

Fin à la récursion gauche

Sheila Greibach to the rescue!

Théorème (re THL 3)

Pour chaque grammaire hors-contexte G il existe une autre G' telle que L(G') = L(G) et toutes les productions sont sous la forme $S \to \varepsilon$ ou $A \to a\alpha$ avec $a \in \Sigma$ et $\alpha \in (N \setminus \{S\})^*$.

- donc $S \to \varepsilon$ ou $A \to aA_1 \dots A_n$
- convertir récursion gauche en récursion droite

Exemple:

$$X o Xu$$
 devient $X o vY$
 $\mid v$ $Y o uY$
 $\mid \varepsilon$

LL(1)isation

Pour convertir G en LL(1):

- éliminer récursion à gauche pour pouvoir calculer FIRST
- factorisation gauche pour éviter des conflits FIRST/FIRST
- les deux constructions introduit des productions type $A \rightarrow \varepsilon$
- alors comment modifier notre algorithme LL(1) pour les traiter?

Uli Fahrenberg

Théorie des langages : THL

FIRST avec ε

```
FIRST(A) = \{a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw\}
def FIRST(A):
      res = \{\}
      foreach (A to aw):
            res += \{a\}
      foreach (A to Bw):
            res += FIRST(B)
      return res
   • mais si A \rightarrow Aw?
        • récursion à gauche : on sais l'éviter
   • ou si A \to Bw et B \Rightarrow \varepsilon?

    traiter avec NULL et FOLLOW :
```

NULL

Définition (8.3)

 $NULL \subseteq N$ est défini par $NULL = \{A \in N \mid A \Rightarrow^* \epsilon\}$.

```
def NULL():
    res = {A | A to epsilon};
    while true:
        new = res
            foreach A to A1...An:
                 if all(Ai in new):
                     new += \{A\}
        if new == res: break
        res = new
    return res
```

encore un algorithme de point fixe

Exemple

$$Z \to XYZ \mid c$$

$$X \to Y \mid a$$

$$Y \to b \mid \varepsilon$$

NULL =

Exemple

$$Z \to XYZ \mid c$$

$$X \to Y \mid a$$

$$Y \to b \mid \varepsilon$$

$$NULL = \{X, Y\}$$

FIRST avec ε , bis

```
\mathsf{FIRST}(A) = \{ a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* \mathsf{aw} \}
def FIRST(X):
     if X == a: return {a}
     if X == epsilon: return {}
     res = {}
     foreach (X to A1 .. An Y w):
           if all(NULL(Ai)):
                res += FIRST(Y)
     return res
```

$$Z \rightarrow XYZ \mid c$$

 $X \rightarrow Y \mid a$ NULL = $\{X, Y\}$
 $Y \rightarrow b \mid \varepsilon$

$$Z \rightarrow XYZ \mid c$$

 $X \rightarrow Y \mid a$ NULL = $\{X, Y\}$
 $Y \rightarrow b \mid \varepsilon$

$$\begin{array}{c|c} A & \mathsf{FIRST}(A) \\ \hline X & a, b \\ Y & b \\ Z & c \\ \end{array}$$

$$Z \rightarrow XYZ \mid c$$

 $X \rightarrow Y \mid a$ NULL = $\{X, Y\}$
 $Y \rightarrow b \mid \varepsilon$

$$\begin{array}{c|c} A & \mathsf{FIRST}(A) \\ \hline X & a, b \\ Y & b \\ Z & c, a \end{array}$$

$$Z \rightarrow XYZ \mid c$$

 $X \rightarrow Y \mid a$ NULL = $\{X, Y\}$
 $Y \rightarrow b \mid \varepsilon$

$$\begin{array}{c|c}
A & \mathsf{FIRST}(A) \\
\hline
X & a, b \\
Y & b \\
Z & c, a, b
\end{array}$$

FOLLOW

Le dernier morceau : calculer des terminaux qui peuvent suivre une variable dans une dérivation :

Définition (8.4, corrigé)

Soit $A \in N$, alors FOLLOW(A) $\subseteq \Sigma$ est défini par FOLLOW(A) = { $a \in \Sigma \mid \exists B \in N, \alpha, \beta \in V^* : B \Rightarrow^* \alpha A a \beta$ }.

Algorithme:

- pour chaque $A \in N$: FOLLOW(A) = \emptyset
- répéter jusqu'au point fixe :
 - pour chaque $B \to \alpha A \beta \gamma$ avec $\beta \in \mathsf{NULL}^*$:
 - si $\gamma \notin \text{NULL}^*$: FOLLOW(A) += FIRST(γ)
 - \circ si $\gamma \in \mathsf{NULL}^* : \mathsf{FOLLOW}(A) += \mathsf{FOLLOW}(B)$

Uli Fahrenberg Théorie des langages : THL 67/77

$$\begin{array}{c|c}
A & \mathsf{FIRST}(A) \\
\hline
X & a, b \\
Y & b \\
Z & c, a, b
\end{array}$$

$$\begin{array}{c|c}
A & \mathsf{FIRST}(A) \\
\hline
X & a, b \\
Y & b \\
Z & c, a, b
\end{array}$$

Algorithme LL(1) complet

- entrée : une grammaire hc G
- calculer NULL
- construire la table FIRST
- construire la table FOLLOW
- construire la TABLE de parsage :
 - **1** pour chaque production $X \to w$ (n):
 - pour chaque $a \in FIRST(w)$: TABLE $(X, a) += \{n\}$
 - o si $w \in NULL$ ou $w = \varepsilon$:
 - pour chaque a ∈ FOLLOW(X) : TABLE(X, a) += {n}

Uli Fahrenberg

Théorie des langages : THL

$$Z \rightarrow XYZ$$
 (1)

$$|c|$$
 (2)

$$X \to a$$
 (3)

$$Y \rightarrow b$$
 (5)

$$\mid \varepsilon$$
 (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$X \to a$$
 (3)

$$Y \rightarrow b$$
 (5)
 $\mid \varepsilon$ (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$|c|$$
 (2)

$$X \to a$$
 (3)

$$|Y \qquad (4)$$

$$Y \to b \qquad (5)$$

$$Y o b$$
 (5)
 $\mid \varepsilon$ (6)

$$\begin{array}{c|c}
A & FOLLOW(A) \\
\hline
X & a, b, c \\
Y & a, b, c \\
Z & \end{array}$$

$$NULL = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$X \to a$$
 (3)

$$|\varepsilon|$$
 (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$X \to a$$
 (3)

$$|\varepsilon|$$
 (6)

$$\mathsf{NULL} = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$|c|$$
 (2)

$$X \to a$$
 (3)

$$|Y|$$
 (4)

$$Y \to b$$
 (5)
 $\mid \varepsilon$ (6)

$$\begin{array}{c|c}
A & FOLLOW(A) \\
\hline
X & a, b, c \\
Y & a, b, c \\
Z & \end{array}$$

$$\mathsf{NULL} = \{X, Y\}$$

