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Please download on Moodle files parsing.c, parsing.h and grammar0.c beforehand.

1 A C Parser

Our goal is to design a straightforward C implementation of the LL(1) parsing algorithm. To this end, you need
nothing but your trusty C compiler.

1.1 Manipulating the Input Stream

We will not be interfacing this parser with an actual lexer yet; we instead assume that the input (terminal)
symbols are of type char and model the input stream as a pointer of type char ** to a string. We first include
the header file parsing.h in order to import the following functions on the input stream:

void eat(char ** stream_pointer, char token)
void wrong_look_ahead(char ** stream_pointer, char symbol)

Function eat checks if the first character of the input stream pointed by stream_pointer is token: it is indeed
true, then it increments the input stream so that it points to the next character. However, if it is not the case,
it triggers instead an error and prints the following message on the error stream before halting:

Read token ’J**stream_pointer’, expected token ’%token’ instead.
Function wrong_look_ahead triggers an error and prints the following message on the error stream:

No rule matched to non-terminal ’%symbol’ can generate look-ahead ’%**stream_pointer’.

1.2 Designing a LL Parser

LL(1) is a simple enough algorithm; we can design a C implementation of a LL(1) parser for a given grammar
by carrying out the following steps:

1. Compute the LL(1) table and check if the grammar is LL(1) in the first place; obvious enough, but it’s
nonetheless worth mentioning.

2. For each non-terminal X, create a function void X(char ** stream_pointer).

3. In the body of function X, use a switch or if statement that filters the possible values of the incoming
look-ahead **stream_pointer:

switch (**stream_pointer) {

case ’a’:
// Apply rule (X, a) of the LL(1) parsing table, assuming it exists.
break;

case ’b’:
// Apply rule (X, b) of the LL(1) parsing table, assuming it exists.
break;

default:
// Catch the terminal symbols that are not matched to any rule.
wrong_look_ahead(stream_pointer, ’X’);



Note that the non-terminal symbol $ corresponds to the end of string character >\0°.

4. In order to apply a grammar rule, read its right pattern from left to right, eating the terminal symbols
and calling the functions associated with the non-terminal symbols as you do so. As an example, in order
to apply rule X — aY'b, we write the following instructions in the body of function X:

eat (stream_pointer, ’a’);
Y(stream_pointer) ;

eat (stream_pointer, ’b’);

5. Once the only rule Z — S$ associated with the axiom Z has been applied, the parsing process is over.

6. In order to start the parsing process, call the axiom Z.

File grammar0. c features a simple LL(1) parser that recognizes the following grammar Gy:

Z— 5% (1)
S —(9) (2)
| n (3)

Question 1. Compile grammar0.c and test the resulting parser on a few examples (remember that the input
string should be written between quotation marks if it contains parentheses).

Question 2. We create a new grammar G; by adding a rule S — {S} to Gy. Create a new LL(1) parser
grammarl.c based on grammarO.c that recognizes Gp, then test it on a few examples.



2 Parsing Arithmetic Expressions

Our goal is to write a LL(1) parser than can recognize and compute simple arithmetic expressions.

2.1 Parsing Simple Sums
Consider the following LL(1) grammar Gs:

Z — S$ (1)
S — IU (2)
U— +IU (3)

le (4)
I—n (5)

It generates the language n, n+n, n+n+n, etc. Prefix factorization thanks to the non-terminal U ensures that
this grammar is indeed LL(1).

Question 3. Compute rigorously Go’s LL(1) table using Null, First, and Follow.

Question 4. Write a new LL(1) parser grammar2.c that recognizes Go, then test it on a few examples.

2.2 Computing Simple Sums

We introduce a new grammar G3 by replacing Go’s fifth rule with a new rule I — integer, where integer stands
for any non-empty sequence of digits. Our next objective is not only to parse but also compute the actual
value of the arithmetic expressions generated by Gs. To do so, we must ensure that the non-terminal functions
have return type int instead of void and perform additions as the parser applies grammar rules; we must also
entirely rewrite function I.

Question 5. Rewrite function I of grammar2.c so that it eats and returns instead the first integer read on
the input stream. As an example, given an input stream 0123+45, I should eat 0123 and return the int value
123. Use the function isdigit of library ctype to check if the look-ahead is indeed a digit; if it is not, trigger
an error instead.

Question 6. Write a new LL(1) parser grammar3.c that recognizes Gz and computes then prints the value
of the input arithmetic expression. Test it on a few examples. Note that the function isdigit can be used to
detect integer looks-ahead.

2.3 Products and Subtractions

Now consider the following LL(1) grammar Gy:

Z— S$ (1)
S — PU (2)
U — +PU (3)

E ()
P IV (5)
Vo sV (6)

| e (7)
I — integer (8)

It generates the language of arithmetic expressions with addition and product on integers. Intuitively, an
arithmetic expression is written as a sum S of products P of integers I. Thanks to the non-terminals U and V,
prefix factorization ensures again that this grammar is indeed LL(1).

Question 7. Write a new LL(1) parser grammar4.c based on grammar3.c that recognizes G4 and computes
then prints the value of the input arithmetic expression. Test it on a few examples.



Question 8. We create a new grammar G by adding a rule U — —PU to G4. Create a new LL(1) parser
grammar5. c based on grammar4. c that recognizes G5 and computes then prints the value of the input arithmetic
expression. Test it on a few examples.

2.4 Parentheses and Divisions

Finally, we extend our grammar and parser in order to handle parentheses and divisions. The former extension
is fairly straightforward; the latter, however, may witness unexpected associativity issues caused by rounding
quotients down to integers.

Question 9. We create a new grammar Gg by adding a rule I — (5) to Gs. Create a new LL(1) parser
grammar6. c based on grammar5. c that recognizes Gg and computes then prints the value of the input arithmetic
expression. Test it on a few examples.

Question 10. We create a new grammar G; by adding a rule V- — /IV to Gg. Create a new LL(1) parser
grammar?.c based on grammar6.c that recognizes G; and tries to compute then print the value of the input
arithmetic expression. Test it on the examples 2/4%8, 2x8/4 and 8/4*2. Is the program working as intended?
Is its implementation of division left-associative or right-associative? Note that there are various ways to
implement division: you may, as an example, add one or more new argument to function V that carry over the
dividend and divisor evaluated so far.



3 Starred Grammars

We introduce a new class of grammars known as starred grammars that allows the use of the Kleene star in the
body of grammar rules. As an example, the rule X — A(B)* stands for the countable set of production rules
X - A, X — AB, X — ABB, etc. We consider the starred grammar Gg:

Z — S$% (1)
S—I(/I)" (2)
I — integer (3)

Gs generates arithmetic expressions with division on integers.

Question 11. Write a new LL(1) parser grammar8.c that recognizes Gs and computes then prints the value
of the input arithmetic expression. To do so, you may use a while instruction in the body of the function S.
Then test this parser on a few examples. Is this grammar left-associative or right-associative?
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